Comp 212

Review: Selection Sort

April 2, 2001

e A variation of Selection Sort that finds the element with the largest value

at each step:

66

73

59

66

59

87

59

73 87

66 73 87

Steps



Comp 212 April 2, 2001

Heap Sort

e Heap Sort, like Selection Sort, is a hard-split, easy-join method.

e Think of Heap Sort as an improved (faster) version of Selection Sort.

— Specifically, split (), which finds the maximum (minimum) element
in the subarray, is made to run in O(log n) steps instead of O(n)
steps, where n is the subarray length.

* Since split () is performed n times, where n is the (overall) array
length, Heap Sort takes O(n log n) steps.



Comp 212 April 2, 2001

How is split() sped up?

e The elements in the unsorted portion of the array are organized into a
heap.

Unsorted: Heap | Sorted

e —
progr ess



Comp 212 April 2, 2001

What Is A Heap?

e A heap is a binary tree that (1) is almost balanced (we allow a variation
of at most one in path lengths from the root to the leaves) and (2)
exhibits the heap property:

— the root, if non-null, is the largest key in the tree, and its left and
right subtrees are themselves heaps.

| ar gest key

children are :mmcm//



Comp 212 April 2, 2001

Implementing A Heap Within An Array?




Comp 212 April 2, 2001

Heap Sort Basics

87 66 73 59

?
73 66 59 87

?

Steps

66 59 73 87

? ¥
59 66 73 87

?




Comp 212 April 2, 2001

Heap Sort: split()

public int split(int[] A, int lo, int hi)
{

// Swap A[hi] and A[lo].

int temp = Alhil;

Alhi] = A[lo];

A[lo] = temp;

// Restore the heap property by ‘‘sifting down’’
// the element at A[lo].

Heapifier.Singleton.siftDown(A, lo, lo, hi - 1);

return hi;



Comp 212

Example of siftDown()

April 2, 2001

87

98

63

52

84

76

41

59

49

36

13

79

58

43

23




Comp 212 April 2, 2001

siftDown(): The Implementation

public void siftDown(int[] A, int lo, int cur, int hi)

{

int dat = Alcur]; // hold on to data.
int child = 2 * cur + 1 - lo; // index of left child of A[cur].
boolean done = hi < child;

while (!done) {

if (child < hi && A[child + 1] < A[child]) {
child++;
} // child is the index of the smaller of the two children.

if (A[child] < dat) {
Alcur] = Al[child];
cur = child;
child = 2 * cur + 1 - 1lo;
done = hi < child;



Comp 212 April 2, 2001
} // Alcur] is less than its children.

else { // Alcur] <= A[child].
done = true; // heap condition is satisfied.
} // Alcur] is less than its children.
+ // location found for temp.

Alcur] = dat;
}

10



Comp 212 April 2, 2001

Initializing the Heap: HeapSorter ()

public class HeapSorter extends ASorter

{
public HeapSorter(int[] A, int lo, int hi)

{
for (int cur = (hi - lo + 1) / 2; cur >= lo; cur--) {
Heapifier.Singleton.siftDown(A, lo, cur, hi);

+
+

11



