Comp 212 April 4, 2001

Initializing the Heap: HeapSorter ()

public class HeapSorter extends ASorter

{
public HeapSorter(int[] A, int lo, int hi)

{
for (int cur = (hi - 1o + 1) / 2; cur >= lo; cur--) {
Heapifier.Singleton.siftDown(A, lo, cur, hi);

+
+

Comp 212 April 4, 2001

Analysis of HeapSorter()’'s running time

e We can derive a tighter bound than O(n log n) by observing that the
time for siftDown () to run at a node varies with the height of the node
in the tree, and the heights of most nodes are small.

e The tighter analysis relies on the property that in an n-element heap
there are at most [n/2"*1] nodes of height h.

e The time required by siftDown() when called on a node of height A is
O(h), so we can express the total cost of HeapSorter () as

|log n] [log n| h

Wo [10(h) =0(n .). (1)

h=0

Comp 212 April 4, 2001

Analysis of HeapSorter ()’s running time (cont.)

Comp 212 April 4, 2001

Analysis of HeapSorter ()’s running time (cont.)

The last summation can be evaluated by differentiating and multiplying by
x both sides of the infinite geometric series (for || < 1)

> 1
Sato)
1l —=x
k=0
to obtain
> T
kxt = (3)
2K Ty
in which x = 1/2 is substituted to yield
= h 1/2
= = 2. 4
M Mn AH _ H\Mvw A v

h=0

Comp 212 April 4, 2001

Analysis of HeapSorter ()’s running time (cont.)

Thus, the running time of the HeapSorter () constructor can be bounded
as

[log n]
O(n M w*w §MU ww O(2n) = O(n). (5)

h=0

Comp 212

Example of siftUp()

April 4, 2001

103

87

98

63

52

84

76

41

59

49

36

13

79

58

43

Comp 212 April 4, 2001

Removal Of A Non-Root Node From A Heap

e Consider removing the node with the key 29 from the following heap.

3ord47

Comp 212 April 4, 2001

IPriorityQueue

package queues;

import java.util.Enumeration;

import ordered.IOrdered;

public interface IPriorityQueue A
public void enqueue(IOrdered data);
public IOrdered dequeue();

public Enumeration enumeration();

