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Initializing the Heap: HeapSorter ()

public class HeapSorter extends ASorter

{
public HeapSorter(int[] A, int lo, int hi)

{
for (int cur = (hi - 1o + 1) / 2; cur >= lo; cur--) {
Heapifier.Singleton.siftDown(A, lo, cur, hi);

+
+
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Analysis of HeapSorter()’'s running time

e We can derive a tighter bound than O(n log n) by observing that the
time for siftDown () to run at a node varies with the height of the node
in the tree, and the heights of most nodes are small.

e The tighter analysis relies on the property that in an n-element heap
there are at most [n/2"*1] nodes of height h.

e The time required by siftDown() when called on a node of height A is
O(h), so we can express the total cost of HeapSorter () as

|log n] [log n| h

Wo [ 10(h) =0(n . ). (1)
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Analysis of HeapSorter ()’s running time (cont.)
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Analysis of HeapSorter ()’s running time (cont.)

The last summation can be evaluated by differentiating and multiplying by
x both sides of the infinite geometric series (for || < 1)
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in which x = 1/2 is substituted to yield
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Analysis of HeapSorter ()’s running time (cont.)

Thus, the running time of the HeapSorter () constructor can be bounded
as

[log n]
O(n M w*w §MU ww O(2n) = O(n). (5)
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Removal Of A Non-Root Node From A Heap

e Consider removing the node with the key 29 from the following heap.

3ord47
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IPriorityQueue

package queues;

import java.util.Enumeration;

import ordered.IOrdered;

public interface IPriorityQueue A
public void enqueue(IOrdered data);
public IOrdered dequeue();

public Enumeration enumeration();



