Comp 212 April 16, 2001

Poorly Balanced Binary Search Trees

e The same keys might be arranged to form a “perfectly” unbalanced tree.




Comp 212 April 16, 2001

Rotation

e Rotation preserves the binary search tree property.

Right Rotation

L eft Rotation



Comp 212 April 16, 2001

A Single Rotation Applied

e A single left rotation on the original root (“3") of the tree produces:




Comp 212 April 16, 2001

Multiple Rotations Applied

e Performing a left rotation on alternating nodes (“3", “22", and “41") of
the original tree produces:




Comp 212 April 16, 2001

A BiTree Visitor For Left Rotation

package binaryTreeVisitor;
import binaryTree.*;

public class Rotateleft implements IVisitor
{
public final static RotatelLeft Singleton = new RotatelLeft();

private RotateLeft ()
{
+

public Object emptyCase(BiTree host, Object input)
{

throw new IllegalStateException("Can’t rotate an empty tree.")

+



Comp 212 April 16, 2001

public Object nonEmptyCase(BiTree host, Object input)
{
BiTree right = host.getRightSubTree();
host.setRightSubTree(right.getLeftSubTree());

right.setLeftSubTree (host);

return right;



Comp 212 April 16, 2001

An ldea: The Treap

e Suppose that each node has a distinct key and priority,

— and that we maintain the BST property on the key and the heap
property on the priority.

Priority



Comp 212 April 16, 2001

An Idea: The Treap (cont.)

e The insertion procedure is straightforward:

1. Insert the node (key,priority,object) by key, just like a BST.
2. If the node’s priority is less than its parent’s priority, rotate around the
parent, lifting the node above its parent.
— For example, suppose we had inserted (key=73, priority=6) into the
following treap.

L eft Rotation
l



Comp 212 April 16, 2001

An Idea: The Treap (cont.)

e What happens if we insert (key=49, priority=19) into the following
treap?

Priority



Comp 212 April 16, 2001

The Punchline

e Suppose that we insert (key=3,priority=56), (16,33), (22,89), (31,17),
(41,49), (53,22), and (69,36) in order of increasing key.

— What happens? Note: ignoring the priority, this produces a worst-case
BST.

56 w 33 w 33 N 17 17
56 56 89 33 33 49
56 89 56 89

10



Comp 212 April 16, 2001

The Punchline (cont.)

11



Comp 212 April 16, 2001

The Punchline (cont.)

e The punchline: The same treap will result regardless of the order of
insertion.

— Suppose that you don’t require the priority for your application. The
priority can be:
x A randomly generated number
x A “hash” of the key

12



