Comp 212 April 27, 2001

Hash Functions: Cyclic Redundancy Check (CRC)

- Let k[n] denote the n^{th} bit of the key.
- Divide the corresponding polynomial $k[n] \times x^n + k[n-1] \times x^{n-1} + \ldots + k[0]$ by a "magic" polynomial
- Note: the coefficients of both polynomials are either 0 or 1.
- Uses "polynomial arithmetic mod 2": all coefficients are calculated mod 2. The "magic" (divisor) polynomial is commonly called the "generator" polynomial
- Use the remainder as the hash code.

Comp 212 April 27, 2001

Hash Functions: CRC (cont'd)

- The CRC algorithm is widely used for detection of errors in data storage and transmission by unreliable media
- With a well-chosen generator polynomial, it's possible to detect ALL:
- * single-bit errors
- * two-bit errors
- errors where an odd number of bits are affected
- "burst" errors (up to the degree of the generator polynomial)
- The CRC algorithm makes a good hash function.
- A single-bit difference between two keys yields large differences between the hash codes
- Easy to apply to any size key.
- The implementation can be reduced to repeated table lookup. (The table is dependent on the generator polynomial.)

Java's Object Class's hashCode Method

Java's Object Class defines a hashCode Method.

```
public class Object {
                           public
                                                                                    public final Class getClass();
public int hashCode();
                                                      public String toString();
                            boolean equals(Object obj);
```

as those provided by the Java library class java.util.Hashtable This method is supported principally for the benefit of hash tables such