Comp 212 April 27, 2001

Hash Functions: Cyclic Redundancy Check (CRC)

e Let k[n] denote the nt” bit of the key.

e Divide the corresponding polynomial k[n] x 2™ +k[n—1] x 2™ 1 +...+k[0]
by a “magic” polynomial.

— Note: the coefficients of both polynomials are either 0 or 1.

— Uses “polynomial arithmetic mod 2": all coefficients are calculated
mod 2. The “magic” (divisor) polynomial is commonly called the
“generator’ polynomial.

e Use the remainder as the hash code.



Comp 212 April 27, 2001

Hash Functions: CRC (cont’d)

e The CRC algorithm is widely used for detection of errors in data storage
and transmission by unreliable media.

— With a well-chosen generator polynomial, it's possible to detect ALL:
x single-bit errors
x two-bit errors
x errors where an odd number of bits are affected
* “burst” errors (up to the degree of the generator polynomial)

e The CRC algorithm makes a good hash function.

— A single-bit difference between two keys yields large differences between
the hash codes.
— Easy to apply to any size key.
* The implementation can be reduced to repeated table lookup. (The
table is dependent on the generator polynomial.)



Comp 212 April 27, 2001

Java’s Object Class’s hashCode Method

e Java's Object Class defines a hashCode Method.

public class Object {
public final Class getClass();
public String toString();
public boolean equals(Object obj);
public int hashCode() ;

e This method is supported principally for the benefit of hash tables such
as those provided by the Java library class java.util.Hashtable.



