Comp 212 - Intermediate Programming EXAM #1 February 12, 2003

Rice University - Instructors: Cox & Nguyen NAME:
Instructions

1. Thisexam isconducted under the Rice Honor Code. It is a closed-notes, closed-book exam.

2. Fill inyour name on every page of the exam.

3. If you forget the name of a Java class or method, make up a name for it and write a brief explanation in the
margin.

4. You are expected to know the syntax of defining a class with appropriate fields, methods, and inheritance
hierarchy. You will not be penalized on trivial syntax errors, such as missing curly braces, missing semi-
colons, etc, but do try to write Java code as syntactically correct as possible. We are more interested in
your ability to show usthat you understand the concepts than your memorization of syntax!

5. Write your code in the most object-oriented way possible, that is, with the fewest number of control
statements and no checking of the states and class types of the objects involved.

6. Inall of the questions, feel free to write additional helper methods or visitors to get the job done.

7. Make sure you use the Singleton pattern whenever appropriate. Unless specified otherwise, you do not
need to write any code for it. Just write "singleton pattern” as a comment.

8. For each algorithm you are asked to write, 90% of the grade will be for correctness, and 10% will be for
efficiency and code clarity.

9. You may use as helpers the following visitors from the lectures and the homeworks: GetLength, GetMin,

GetSum, ToString, Reverse, MakeClone, LastElement, GetNth, FirstNElements, Concatenate,
MinFront2 without explanation/implementation.

10. You have two hours and a half to complete the exam.

Please State and Sign your Pledge:

1) 20

2) 15 3915 | 3p)15 | 4)35 TOTAL
100

1of 8

Comp 212 - Intermediate Programming

Rice University - Instructors: Cox & Nguyen

EXAM #1

February 12, 2003

NAME:

For your convenience, below isthe UML class diagram for the scheme list framework with an abstract factory
studied in class. You are free to use this list framework without explanation/implementation.

& Tist "knows" how to call an algorithee with a
grven input Chiect to produce an ontput Chyect.

P

& list factory knows how to marmfacture
[List ohiects.

z=IList== — ==IListFactory==
+ Object : exacutafilistAlgo algo, Ohfact inp) e s + IBmprlist : make EmpipList)
+ [NEList : make NEList{(biact first, IList fail)

| 1

| |

| |instantiates

| =z=<IEmptyList-= <<INEList== |

| + Objoct : getFivst() = |

+ WistogetRest) |- T T T T T T T

lca]]s on fr\ .ﬁ'\ # 4 |

| I | |

| . i |

| operates unl LS S e e e S S BT =l

| | operaies on |

| | I

| | |

Y I |

q::[[jstﬁ.]gu::::

+ Object : empfpCase(IEmpfpList host, Object inp)
+ OBjact : nonEmpip Case(INEList host Objact mp)

20f 8

Comp 212 - Intermediate Programming EXAM #1 February 12, 2003
Rice University - Instructors: Cox & Nguyen NAME:

1. WriteanIListAlgo, called LastN, to return the list that contains the last N elements of an IList. AssumeN >=
0. If N > thelength of the list, throw an exception.

30f 8

Comp 212 - Intermediate Programming EXAM #1 February 12, 2003
Rice University - Instructors: Cox & Nguyen NAME:

2. Assumethe host list contains Integer elements. Write an IListAlgo, called Sel ect i onSor t : to sort the host
list in ascending order according to the following algorithm.

e Empty case: return the empty list (since an empty list is sorted).

e Non empty case: find and move the minimum to the front of the host and recur on the rest of the
resulting list.

40f 8

Comp 212 - Intermediate Programming EXAM #1 February 12, 2003

Rice University - Instructors: Cox & Nguyen NAME:

3.

In the same object-oriented style asthe list, we define an immutable binary tree as follows. Thereis an abstract
notion of abinary tree. Its one behavior, execute(), isavisitor pattern "hook". An empty binary treeis abinary
tree. It hasno data. A non-empty binary treeisabinary tree. It has adata object, aleft subtree called left, and
aright subtree called right. Left and right are themselves binary trees. The non-empty binary tree has three
behaviors for "getting" data, left, and right. This design translates to the following collection of Javainterfaces.

/I Represents a binary tree that knows how to call an algorithm IBTAlgo.
interface |IBi Tree {

bj ect execute(l BTAl go al go, Object inp);
}

/l Represents the empty binary tree.
interface | MITree extends |Bi Tree {

}

/I Represents the non-empty binary tree.
/I It has a data element,
/I a IBiTree substructure called left, and
I/l a IBiTree substructure called right.
interface | NETree extends |Bi Tree {
bj ect getDat();
| Bi Tree getLeftSubtree():
| Bi Tree get Ri ght Subtree();

}

/l Represents an algorithm that operates on an IBiTree.
/I Visitor for IBiTree.
i nterface | BTAl go {
bj ect enptyCase(l MITree host, bject inp);
bj ect nonEnptyCase(l NETree host, bject inp);
}

continued on next page...

50f 8

Comp 212 - Intermediate Programming EXAM #1 February 12, 2003
Rice University - Instructors: Cox & Nguyen NAME:

a) Writeavisitor IBTAIlgo called IsLeaf that returns Boolean. TRUE if the host is aleaf node,
Boolean.FALSE otherwise. A treeissaid to be aleaf node when both of its subtrees are empty. The
algorithm must not check for emptiness of the subtrees. Hint: ask the subtrees for help!

60f 8

Comp 212 - Intermediate Programming EXAM #1 February 12, 2003
Rice University - Instructors: Cox & Nguyen NAME:

b) Writeavisitor IBTAIgo called InFixOrder that returns an IList containing all the elements in the host
treein theinfix order. Infix ordering is defined recursively as follows: all elementsin the left subtree
arelisted in infix order, followed by the current element, followed by all the elementsin the right
subtree listed in infix order. For example, the infix ordering of the tree:

7of 8

Comp 212 - Intermediate Programming EXAM #1 February 12, 2003
Rice University - Instructors: Cox & Nguyen NAME:

4. Thereisan abstract notion of arobot. Robots are manufactured by a factory. Each factory producesits own
kind of robots. Each robot remembersits current location, its factory of manufacture and has a unique serial
number. (In other words, no two robots, regardless of factory have the same serial number.) Robots have a
behavior "go to alocation”, as well as"getter" methods. A factory has alocation and knows all of the robots it
has made. A location is an object having alongitude and a latitude. Factories have two behaviors. "make a
robot" and "recall robots'. Occasionally, the government is given a failed robot and discovers a design defect in
that robot. At which point, the government requests the factory that made the robot to recall all such robots. A
recall is defined as directing all robots made by that factory to go to the location of the factory. Your task isto
produce an object-oriented design simulating robots, factories and locations. Express your design in Java code.
Note that a factory may need additional data structures to keep track of its robots.

80of 8

