
Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 1 of 10

Instructions
1. This exam is conducted under the Rice Honor Code. It is a closed-notes, closed-book exam.
2. Fill in your name on every page of the exam.
3. If you forget the name of a Java class or method, make up a name for it and write a brief explanation in the

margin.
4. You are expected to know the syntax of defining a class with appropriate fields, methods, and inheritance

hierarchy. You will not be penalized on trivial syntax errors, such as missing curly braces, missing semi-
colons, etc, but do try to write Java code as syntactically correct as possible. We are more interested in
your ability to show us that you understand the concepts than your memorization of syntax!

5. Write your code in the most object-oriented way possible, that is, with the fewest number of control
statements and no checking of the states and class types of the objects involved.

6. In all of the questions, feel free to write additional helper methods or visitors to get the job done.
7. You are free (and encouraged) to re-use any of the visitors done in the lectures/labs/homeworks without

having to rewrite them. When reusing such a published visitor, just comment that it comes from the
lectures or labs or homeworks and describe what it is supposed to do.

8. For each algorithm you are asked to write, 90% of the grade will be for correctness, and 10% will be for
efficiency and code clarity, unless specified otherwise.

9. You have two hours and a half to complete the exam.

Please State and Sign your Pledge:

1) 20 pts 2a) 15 pts 2b) 15 pts 3) 20 pts 4) 30 pts Total 100 pts

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 2 of 10

For your convenience, below are the UML class diagrams for the immutable list framework (IList) and the mutable
list framework (LRStruct) studied in class. You are free to use these list frameworks without
explanation/implementation. Note that for the mutable list framework, you are allowed to call only the public
methods of LRStruct and IAlgo.

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 3 of 10

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 4 of 10

1. Write an IListAlgo called EveryThird that returns an IList containing every third element of the

host list. It should return an empty list in the case of an empty host list. The following table illustrates a
few of the desired results.

IList Host Returned IList

() – the empty list () – the empty list
(1) (1)
(1, 2) (1)
(1, 2, 3) (1,)
(1, 2, 3, 4) (1, 4)
(1, 2, 3, 4, 5) (1, 4)
(1, 2, 3, 4, 5, 6) (1, 4)
(1, 2, 3, 4, 5, 6, 7) (1, 4, 7)

 Hint: The EveryThird algorithm can be viewed as a generalization of the EvenIndexed and
OddIndexed algorithms discussed in class. Below is the code for these two algorithms.

Note: Although the following code does not use factories, your solution to this problem should.

/**
 * Extracts the even-indexed elements of a list.
*/
public class EvenIndexed implements IListAlgo {

 public static final EvenIndexed Singleton = new EvenIndexed();
 private EvenIndexed() {
 }

 public Object emptyCase(IEmptyList host, Object... nu) {
 return host;
 }

 public Object nonEmptyCase(INEList host, Object... nu) {
 return new NEList(host.getFirst(),
 (IList)host.getRest().execute(OddIndexed.Singleton));
 }
}

/**
 * Extracts the odd-indexed elements of a list.
*/
public class OddIndexed implements IListAlgo {

 public static final OddIndexed Singleton = new OddIndexed();
 private OddIndexed() {
 }

 public Object emptyCase(IEmptyList host, Object... nu) {
 return host;
 }

 public Object nonEmptyCase(INEList host, Object... nu) {
 return host.getRest().execute(EvenIndexed.Singleton);
 }
}

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 5 of 10

A blank page for writing code…

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 6 of 10

2. Write an IListAlgo to remove the last element of the host IList. Specifically it should return an
IList that is a copy of the host list without its last element. For an empty list, it should return an empty
list.

� A simple (but inefficient) way to accomplish this task is to reverse the list in some appropriate
number of times. Implement this algorithm and name it RemLast1. You may use the Reverse
visitor done in one of your homeworks without having to include its code as part of your solution.

public class RemLast1 implements IListAlgo {

 private IListFactory _fact;

 public RemLast1(IListFactory fact) {
 _fact = fact;
 }

 public Object emptyCase(IEmptyList L, Object... nu) {
 // student to complete

 }

 public Object nonEmptyCase(final INEList L, final Object... nu) {
 // student to complete

 }

}

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 7 of 10

� Implement a more efficient algorithm to remove the last element by traversing the host list only
once. Name it RemLast2.

/**
* Note: the IListFactory is a parameter to the vistor methods.
*/
public class RemLast2 implements IListAlgo {

 public static final RemLast2 Singleton = new RemLast2();

 private RemLast2() {
 }

 /**
 * @param fact[0] is an IListFactory.
 */
 public Object emptyCase(IEmptyList L, Object... fact) {
 // student to complete

 }

 /**
 * @param fact[0] is an IListFactory.
 */
 public Object nonEmptyCase(final INEList L, final Object... fact) {
 // student to complete

 }

}

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 8 of 10

3. Write an IAlgo First2Last that moves the first element of the host LRStruct to the end of the host
LRStruct. Note that the host LRStruct is mutated in this case.

public class First2Last implements IAlgo {
 public static final First2Last Singleton = new First2Last ();
 private First2Last () {
 }

 public Object emptyCase(LRStruct host, Object... nu) {
 // student to complete

 }

 public Object nonEmptyCase(final LRStruct host, Object... nu) {
 // student to complete

 }
}

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 9 of 10

4. In this problem you will write a collection of Java classes that model the supervisory relationship between
employees in a simple, small company. Specifically, every employee has a name and a unique
identification number. Being a small company, the owner is an employee. The owner has a collection of
employees who report directly to him or her. However, not every employee reports to the owner. A
manager is an employee. A manager has an employee to whom he or she reports ("the manager's
manager") and a collection of employees who report directly to him or her ("the team"). A worker is an
employee. A worker has an employee to whom he or she reports.

There are several operations that can be applied to an employee.

� The simplest are getName and getId.
� The operation getTotal returns the total number of employees who work for the company.

When an employee is hired, he or she is always a worker and must be assigned an identification
number and manager. When an employee quits or is fired, the number of total employers should
be reduced, but his or her ID should never be reused.

� A more complex operation is promote. When promote is applied to a worker, the worker
becomes a manager, with a new manager and a team. When promote is applied to a manager,
the manager remains a manager, but the manager's manager and team change. Thus promote takes
two parameters: one for the new manager and one for the new team. It is an error to apply
promote to the owner.

� getAllWorkers is a method that returns a list of all non-manager workers who report directly
and or indirectly to the receiver.

In the space below write all of the classes that constitute your model. You must define all of the above
methods in appropriate classes, implement them all, and be sure to define any fields required by these
methods.

Comp 212 - Intermediate Programming EXAM #1 February 14, 2007
Rice University - Instructors: Cox & Nguyen NAME: ______________________

 10 of 10

A blank page for writing code…

