Bomb Assignment: Defusing a Binary Bomb

COMP 222: Introduction to Computer Organization
Assigned: 9/26/25, Due: Friday, 10/17/25, 11:55PM

1 Introduction

The nefarious Dr. Evil has planted a slew of “binary bombs” on our class machines. A binary bomb is a
program that consists of a sequence of phases. Each phase expects you to type a particular string on stdin.
If you type the correct string, then the phase is defused and the bomb proceeds to the next phase. Otherwise,
the bomb explodes by printing "BOOM! ! ! " and then terminating. The bomb is defused when every phase
has been defused.

There are too many bombs for us to deal with, so we are giving each student a bomb to defuse. Your
mission, which you have no choice but to accept, is to defuse your bomb before the due date. Good luck,
and welcome to the bomb squad!

Step 1: Get Your Bomb

You can obtain your bomb by pointing your web browser at:
https://classroom.github.com/a/cYu761lTL

This page should say “RICE-COMP222-F25-classroom” and “Accept the assignment — Bomb”. More-
over, it should have a green button labeled “Accept this assignment”!. Please accept the assignment.

Upon accepting the assignment, you will be redirected to another web page. This page will confirm that
you have accepted the assignment, and it will provide you with a link to your personal repository for the
assignment. Click this link to go to your personal repository.

The web page for your personal repository has a green button labeled “Code”. Click this button. You
should now see a text field with a URL. Copy or remember this URL.

Login to the CLEAR system if you have not already done so. Type the following:

git clone [Copy the URL for your repo here]

You will be prompted for your github username and password.
Once the clone operation is complete, you will have a directory named

bomb-[YOUR github ID]
Please cd into this directory, and run the command 1s. You should see the following files:
* Makefile - Specifies how the make command retrieves your bomb

e README .md - Identifies this lab

"You may have to login to GitHub to see this page. If so, you will be prompted for your GitHub username and password.



Bomb Assignment COMP 222

If you do NOT see these files, contact the course staff immediately!
Finally, run the command:

CLEAR> make

This will retrieve your bomb from our server. Specifically, it will create a file named bombk . tar, a file
named bomb—-armed, and a subdirectory called bombk, where & is the unique number of your bomb. The
subdirectory will contain the following files:

* README: Identifies the bomb and its owners.
* bomb: The executable binary bomb.

* bomb. c: Source file with the bomb’s main routine and a friendly greeting from Dr. Evil.

If you do NOT see these files, contact the course staff immediately!

Step 2: Defuse Your Bomb

Your job for this assignment is to defuse your bomb.

You must do the assignment on one of the class machines, i.e., ssh.clear9.rice.edu. In fact,
there is a rumor that Dr. Evil really is evil, and the bomb will always blow up if run elsewhere. There are
several other tamper-proofing devices built into the bomb as well, or so we hear.

You can use many tools to help you defuse your bomb. Please look at the hints section for some tips
and ideas. The best way is to use your favorite debugger to step through the disassembled binary.

Each time your bomb explodes it notifies the bomb assignment server, and you lose 1/2 point (up to a
max of 20 points) in the final score for the assignment. So there are consequences to exploding the bomb.
You must be careful!

The first four phases are worth 10 points each. Phases 5 and 6 are a little more difficult, so they are
worth 15 points each. So the maximum score you can get is 70 points.

Although phases get progressively harder to defuse, the expertise you gain as you move from phase to
phase should offset this difficulty. However, the last phase will challenge even the best students, so please
don’t wait until the last minute to start.

The bomb ignores blank input lines. If you run your bomb with a command line argument, for example,

CLEAR> ./bomb psol.txt

then it will read the input lines from psol.txt until it reaches EOF (end of file), and then switch over
to stdin. In a moment of weakness, Dr. Evil added this feature so you don’t have to keep retyping the
solutions to phases you have already defused.

To avoid accidentally detonating the bomb, you will need to learn how to single-step through the assem-
bly code and how to set breakpoints. You will also need to learn how to inspect both the registers and the
memory states. One of the nice side-effects of doing the assignment is that you will get very good at using
a debugger. This is a crucial skill that will pay big dividends for the rest of your career.

Handin

There is no explicit handin. The bomb will automatically notify your instructors about your progress as you
work on it. You can keep track of how you are doing by looking at the class scoreboard at:

http://www.clear.rice.edu/comp222/assignments/bomb

This web page is updated continuously to show the progress for each bomb.



Bomb Assignment COMP 222

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the
program, and figure out exactly what it does. This is a useful technique, but it not always easy to do. You
can also run it under a debugger, watch what it does step by step, and use this information to defuse it. This
is probably the fastest way of defusing it.

We do make one request, please do not use brute force! You could write a program that will try every
possible key to find the right one. But this is no good for several reasons:

* You lose 1/2 point (up to a max of 20 points) every time you guess incorrectly and the bomb explodes.

* Every time you guess wrong, a message is sent to the bomb assignment server. You could very
quickly saturate the network with these messages, and cause the system administrators to revoke your
computer access.

* We haven’t told you how long the strings are, nor have we told you what characters are in them. Even
if you made the (incorrect) assumptions that they all are less than 80 characters long and only contain
letters, then you will have 2620 guesses for each phase. This will take a very long time to run, and you
will not get the answer before the assignment is due.

There are many tools which are designed to help you figure out both how programs work, and what is
wrong when they don’t work. Here is a list of some of the tools you may find useful in analyzing your bomb,
and hints on how to use them.

e gdb

The GNU debugger, which we discussed in a recent in-class lab, is a command line debugging tool
available on virtually every platform. You can trace through a program line by line, examine memory
and registers, look at both the source code and assembly code (we are not giving you the source code
for most of your bomb), set breakpoints, set memory watch points, and write scripts.

The textbook authors’ web site has a very handy two-page gdb summary that you can print out and
use as a reference:

http://csapp.cs.cmu.edu/2e/docs/gdbnotes—x86-64.pdf

Here are some other tips for using gdb.
— To keep the bomb from blowing up every time you type in a wrong input, you’ll want to learn
how to set breakpoints.
— For online documentation, type “help” at the gdb command prompt, or type “man gdb”, or
“info gdb” ata Unix prompt.
* objdump -t

This will print out the bomb’s symbol table. The symbol table includes the names of all functions and
global variables in the bomb, the names of all the functions the bomb calls, and their addresses. You
may learn something by looking at the function names!

* objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual functions.
Reading the assembly code can tell you how the bomb works.



Bomb Assignment COMP 222

Although objdump -d gives you a lot of information, it doesn’t tell you the whole story. Calls to

system-level functions are displayed in a cryptic form. For example, a call to sscanf might appear
as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1lal0>

To determine that the call was to sscanf, you would need to disassemble within gdb.
* strings
This utility will display the printable strings in your bomb.

Looking for a particular tool? How about documentation? Don’t forget, the commands apropos, man,

and info are your friends. In particular, man ascii might come in useful. Also, the web may also be a
treasure trove of information.



