
Cache Lab: Understanding Cache Memories

COMP 222: Introduction to Computer Organization
Assigned: 11/18/24, Due: Friday, 12/6/24, 11:55PM

Important: This assignment must be done individually. Be sure to carefully read the course policies for
assignments (including the honor code policy) on the assignments page of the course web site:

http://www.clear.rice.edu/comp222/html/assignments.html

1 Overview

This lab will help you understand the impact that cache memories can have on the performance of your C
programs.

The lab consists of two parts. In the first part you will write a small C program (about 200-300 lines) that
simulates the behavior of a cache memory. In the second part, you will optimize a small matrix transpose
function, with the goal of minimizing the number of cache misses.

2 Getting Started

Please visit the web page at https://classroom.github.com/a/dA4XlHmx. (If you are copying
this URL, do not include the period at the end of the sentence, as it is not part of the URL.) This page should
say “RICE-COMP222-F24-Classroom” and “Accept the assignment — CacheLab”. Moreover, it should
have a green button labeled “Accept this assignment”1. Please accept the assignment.

Upon accepting the assignment, you will be redirected to another web page. This page will confirm that
you have accepted the assignment, and it will eventually (after you click refresh) provide you with a link to
your personal repository for the assignment. Click this link to go to your personal repository.

The web page for your personal repository has a green button labeled “Code”. Click this button. You
should now see a text field with a URL. Copy or remember this URL.

Login to the CLEAR system if you have not already done so. Type the following:

git clone [Copy the URL for your repo here]

You will be prompted for your github username and password.
Once the clone operation is complete, you will have a directory named

cachelab-[YOUR github ID]

Please cd into this directory, and run the command ls. You should see the following files:

• Makefile – Builds the simulator and tools

• README – Describes these files
1You may have to login to GitHub to see this page. If so, you will be prompted for your GitHub username and password.

1

Cache Lab COMP 222

• driver.py – The driver program, runs test-csim and test-trans

• cachelab.c – Required helper functions

• cachelab.h – Required header file

• csim.c – Your cache simulator

• csim-ref – The executable reference cache simulator

• test-csim – Tests your cache simulator

• test-trans.c – Tests your transpose function

• tracegen.c – Helper program used by test-trans

• traces – Supdirectory containing trace files used by test-csim.c

• trans.c – Your transpose function

If you do NOT see these files, contact the course staff immediately!
You will be modifying two files: csim.c and trans.c. To compile these files, type:

CLEAR> make

3 Description

The lab has two parts. In Part A you will implement a cache simulator. In Part B you will write a matrix
transpose function that is optimized for cache performance.

3.1 Reference Trace Files

The traces subdirectory of your repo contains a collection of reference trace files that we will use to
evaluate the correctness of the cache simulator you write in Part A. The trace files are generated by a Linux
program called valgrind. For example, typing

CLEAR> valgrind --log-fd=1 --tool=lackey -v --trace-mem=yes ls -l

on the command line runs the executable program “ls -l”, captures a trace of each of its memory accesses
in the order they occur, and prints them on stdout.

Valgrind memory traces have the following form:

I 0400d7d4,8
M 0421c7f0,4
L 04f6b868,8
S 7ff0005c8,8

Each line denotes one or two memory accesses. The format of each line is

[space]operation address,size

The operation field denotes the type of memory access: “I” denotes an instruction load, “L” a data load,
“S” a data store, and “M” a data modify (i.e., a data load followed by a data store). There is never a space
before each “I”. There is always a space before each “M”, “L”, and “S”. The address field specifies a 64-bit
hexadecimal memory address. The size field specifies the number of bytes accessed by the operation.

2

Cache Lab COMP 222

3.2 Part A: Writing a Cache Simulator

In Part A you will write a cache simulator in csim.c that takes a valgrind memory trace as input,
simulates the hit/miss behavior of a cache memory on this trace, and outputs the total number of hits,
misses, and evictions.

We have provided you with the binary executable of a reference cache simulator, called csim-ref,
that simulates the behavior of a cache with arbitrary size and associativity on a valgrind trace file. It uses
the LRU (least-recently used) replacement policy when choosing which cache line to evict.

The reference simulator takes the following command-line arguments:

Usage: ./csim-ref [-hv] -s <s> -E <E> -b -t <tracefile>

• -h: Optional help flag that prints usage info

• -v: Optional verbose flag that displays trace info

• -s <s>: Number of set index bits (S = 2s is the number of sets)

• -E <E>: Associativity (number of lines per set)

• -b : Number of block bits (B = 2b is the block size)

• -t <tracefile>: Name of the valgrind trace to replay

The command-line arguments are based on the notation (s, E, and b) from page 617 of the CS:APP3e
textbook. For example:

CLEAR> ./csim-ref -s 4 -E 1 -b 4 -t traces/yi.trace
hits:4 misses:5 evictions:3

The same example in verbose mode:

CLEAR> ./csim-ref -v -s 4 -E 1 -b 4 -t traces/yi.trace
L 10,1 miss
M 20,1 miss hit
L 22,1 hit
S 18,1 hit
L 110,1 miss eviction
L 210,1 miss eviction
M 12,1 miss eviction hit
hits:4 misses:5 evictions:3

Your job for Part A is to fill in the csim.c file so that it takes the same command line arguments and
produces the identical output as the reference simulator. Notice that this file is almost completely empty.
You’ll need to write it from scratch.

Programming Rules for Part A

• Include your name and NetID in the header comment for csim.c.

• Your csim.c file must compile without warnings in order to receive credit.

• Your simulator must work correctly for arbitrary s, E, and b. This means that you will need to allocate
storage for your simulator’s data structures using the malloc function.

3

Cache Lab COMP 222

• For this lab, we are interested only in data cache performance, so your simulator should ignore all
instruction cache accesses (lines starting with “I”). Recall that valgrind always puts “I” in the first
column (with no preceding space), and “M”, “L”, and “S” in the second column (with a preceding
space). This may help you parse the trace.

• To receive credit for Part A, you must call the function printSummary, with the total number of
hits, misses, and evictions, at the end of your main function:

printSummary(hit_count, miss_count, eviction_count);

• For this this lab, you should assume that memory accesses are aligned properly, such that a single
memory access never crosses block boundaries. By making this assumption, you can ignore the
request sizes in the valgrind traces.

3.3 Part B: Optimizing Matrix Transpose

In Part B you will write a transpose function in trans.c that causes as few cache misses as possible.
Let A denote a matrix, and Aij denote the component on the ith row and jth column. The transpose of

A, denoted AT , is a matrix such that Aij = AT
ji.

To help you get started, we have given you an example transpose function in trans.c that computes
the transpose of N ×M matrix A and stores the results in M ×N matrix B:

char trans_desc[] = "Simple row-wise scan transpose";
void trans(int M, int N, int A[N][M], int B[M][N])

The example transpose function is correct, but it is inefficient because the access pattern results in relatively
many cache misses.

Your job in Part B is to write a similar function, called transpose_submit, that minimizes the
number of cache misses across different sized matrices:

char transpose_submit_desc[] = "Transpose submission";
void transpose_submit(int M, int N, int A[N][M], int B[M][N]);

Do not change the description string (“Transpose submission”) for your transpose_submit
function. The autograder searches for this string to determine which transpose function to evaluate for
credit.

Programming Rules for Part B

• Include your name and NetID in the header comment for trans.c.

• Your code in trans.c must compile without warnings to receive credit.

• You are allowed to define at most 12 local variables of type int per transpose function.2

• You are not allowed to side-step the previous rule by using any variables of type long or by using
any bit tricks to store more than one value to a single variable.

• Your transpose function may not use recursion.
2The reason for this restriction is that our testing code is not able to count references to the stack. We want you to limit your

references to the stack and focus on the access patterns of the source and destination arrays.

4

Cache Lab COMP 222

• If you choose to use helper functions, you may not have more than 12 local variables on the stack
at a time between your helper functions and your top level transpose function. For example, if your
transpose declares 8 variables, and then you call a function which uses 4 variables, which calls another
function which uses 2, you will have 14 variables on the stack, and you will be in violation of the rule.

• Your transpose function may not modify array A. You may, however, do whatever you want with the
contents of array B.

• You are NOT allowed to define any arrays in your code or to use any variant of malloc.

4 Evaluation

This section describes how your work will be evaluated. The full score for this lab is 53 points:

• Part A: 27 Points

• Part B: 26 Points

4.1 Evaluation for Part A

For Part A, we will run your cache simulator using different cache parameters and traces. There are eight
test cases, each worth 3 points, except for the last case, which is worth 6 points:

linux> ./csim -s 1 -E 1 -b 1 -t traces/yi2.trace
linux> ./csim -s 4 -E 2 -b 4 -t traces/yi.trace
linux> ./csim -s 2 -E 1 -b 4 -t traces/dave.trace
linux> ./csim -s 2 -E 1 -b 3 -t traces/trans.trace
linux> ./csim -s 2 -E 2 -b 3 -t traces/trans.trace
linux> ./csim -s 2 -E 4 -b 3 -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -t traces/long.trace

You can use the reference simulator csim-ref to obtain the correct answer for each of these test cases.
During debugging, use the -v option for a detailed record of each hit and miss.

For each test case, outputting the correct number of cache hits, misses and evictions will give you full
credit for that test case. Each of your reported number of hits, misses and evictions is worth 1/3 of the credit
for that test case. That is, if a particular test case is worth 3 points, and your simulator outputs the correct
number of hits and misses, but reports the wrong number of evictions, then you will earn 2 points.

4.2 Evaluation for Part B

For Part B, we will evaluate the correctness and performance of your transpose_submit function on
three different-sized output matrices:

• 32× 32 (M = 32, N = 32)

• 64× 64 (M = 64, N = 64)

• 61× 67 (M = 61, N = 67)

5

Cache Lab COMP 222

4.2.1 Performance (26 pts)

For each matrix size, the performance of your transpose_submit function is evaluated by using valgrind
to extract the address trace for your function, and then using the reference simulator to replay this trace on
a cache with parameters (s = 5, E = 1, b = 5).

Your performance score for each matrix size scales linearly with the number of misses, m, up to some
threshold:

• 32× 32: 8 points if m < 300, 0 points if m > 600

• 64× 64: 8 points if m < 1, 300, 0 points if m > 2, 000

• 61× 67: 10 points if m < 2, 000, 0 points if m > 3, 000

Your code must be correct to receive any performance points for a particular size. Your code only needs
to be correct for these three cases and you can optimize it specifically for these three cases. In particular, it is
perfectly OK for your function to explicitly check for the input sizes and implement separate code optimized
for each case.

5 Working on the Lab

5.1 Working on Part A
We have provided you with an autograding program, called test-csim, that tests the correctness of your
cache simulator on the reference traces. Be sure to compile your simulator before running the test:

CLEAR> make
CLEAR> ./test-csim

Your simulator Reference simulator
Points (s,E,b) Hits Misses Evicts Hits Misses Evicts

3 (1,1,1) 9 8 6 9 8 6 traces/yi2.trace
3 (4,2,4) 4 5 2 4 5 2 traces/yi.trace
3 (2,1,4) 2 3 1 2 3 1 traces/dave.trace
3 (2,1,3) 167 71 67 167 71 67 traces/trans.trace
3 (2,2,3) 201 37 29 201 37 29 traces/trans.trace
3 (2,4,3) 212 26 10 212 26 10 traces/trans.trace
3 (5,1,5) 231 7 0 231 7 0 traces/trans.trace
6 (5,1,5) 265189 21775 21743 265189 21775 21743 traces/long.trace

27

For each test, it shows the number of points you earned, the cache parameters, the input trace file, and a
comparison of the results from your simulator and the reference simulator.

Here are some hints and suggestions for working on Part A:

• Do your initial debugging on the small traces, such as traces/dave.trace.

• The reference simulator takes an optional -v argument that enables verbose output, displaying the
hits, misses, and evictions that occur as a result of each memory access. You are not required to
implement this feature in your csim.c code, but we strongly recommend that you do so. It will
help you debug by allowing you to directly compare the behavior of your simulator with the reference
simulator on the reference trace files.

6

Cache Lab COMP 222

• We recommend that you use the getopt function to parse your command line arguments. You’ll
need the following header files:

#include <getopt.h>
#include <stdlib.h>
#include <unistd.h>

See “man 3 getopt” for details.

• Each data load (L) or store (S) operation can cause at most one cache miss. The data modify operation
(M) is treated as a load followed by a store to the same address. Thus, an M operation can result in
two cache hits, or a miss and a hit plus a possible eviction.

5.2 Working on Part B

We have provided you with an autograding program, called test-trans.c, that tests the correctness and
performance of each of the transpose functions that you have registered with the autograder.

You can register up to 100 versions of the transpose function in your trans.c file. Each transpose
version has the following form:

/* Header comment */
char trans_simple_desc[] = "A simple transpose";
void trans_simple(int M, int N, int A[N][M], int B[M][N])
{

/* your transpose code here */
}

Register a particular transpose function with the autograder by making a call of the form:

registerTransFunction(trans_simple, trans_simple_desc);

in the registerFunctions routine in trans.c. At runtime, the autograder will evaluate each reg-
istered transpose function and print the results. Of course, one of the registered functions must be the
transpose_submit function that you are submitting for credit:

registerTransFunction(transpose_submit, transpose_submit_desc);

See the default trans.c function for an example of how this works.
The autograder takes the matrix size as input. It uses valgrind to generate a trace of each regis-

tered transpose function. It then evaluates each trace by running the reference simulator on a cache with
parameters (s = 5, E = 1, b = 5).

For example, to test your registered transpose functions on a 32 × 32 matrix, rebuild test-trans,
and then run it with the appropriate values for M and N :

CLEAR> make
CLEAR> ./test-trans -M 32 -N 32
Step 1: Evaluating registered transpose funcs for correctness:
func 0 (Transpose submission): correctness: 1
func 1 (Simple row-wise scan transpose): correctness: 1
func 2 (column-wise scan transpose): correctness: 1
func 3 (using a zig-zag access pattern): correctness: 1

7

Cache Lab COMP 222

Step 2: Generating memory traces for registered transpose funcs.

Step 3: Evaluating performance of registered transpose funcs (s=5, E=1, b=5)
func 0 (Transpose submission): hits:1766, misses:287, evictions:255
func 1 (Simple row-wise scan transpose): hits:870, misses:1183, evictions:1151
func 2 (column-wise scan transpose): hits:870, misses:1183, evictions:1151
func 3 (using a zig-zag access pattern): hits:1076, misses:977, evictions:945

Summary for official submission (func 0): correctness=1 misses=287

In this example, we have registered four different transpose functions in trans.c. The test-trans
program tests each of the registered functions, displays the results for each, and extracts the results for the
official submission.

Here are some hints and suggestions for working on Part B.

• The test-trans program saves the trace for function i in file trace.fi.3 These trace files are
invaluable debugging tools that can help you understand exactly where the hits and misses for each
transpose function are coming from. To debug a particular function, simply run its trace through the
reference simulator with the verbose option:

CLEAR> ./csim-ref -v -s 5 -E 1 -b 5 -t trace.f0
S 68312c,1 miss
L 683140,8 miss
L 683124,4 hit
L 683120,4 hit
L 603124,4 miss eviction
S 6431a0,4 miss
...

• Since your transpose function is being evaluated on a direct-mapped cache, conflict misses are a
potential problem. Think about the potential for conflict misses in your code, especially along the
diagonal. Try to think of access patterns that will decrease the number of these conflict misses.

• Blocking is a useful technique for reducing cache misses. See

http://csapp.cs.cmu.edu/public/waside/waside-blocking.pdf

for more information.

5.3 Putting it all Together

We have provided you with a driver program, called ./driver.py, that performs a complete evaluation
of your simulator and transpose code. This is the same program that we use to evaluate your submission. The
driver uses test-csim to evaluate your simulator, and it uses test-trans to evaluate your submitted
transpose function on the three matrix sizes. Then it prints a summary of your results and the points you
have earned.

To run the driver, type:

CLEAR> ./driver.py
3Because valgrind introduces many stack accesses that have nothing to do with your code, we have filtered out all stack

accesses from the trace. This is why we have banned local arrays and placed limits on the number of local variables.

8

Cache Lab COMP 222

6 Submitting Your Work

To turn in your lab, you must use git push to copy your work to the github remote repository. We
will only look at the last version that you pushed before the deadline. As a precaution against accidental
loss of your code, we encourage you to push periodically. Please note, the only files that you need to turn
in are csim.c and trans.c. In other words, these are the only files on which you should ever perform
git add.

For grading your submission, we will use the Makefile that was originally provided to compile your
code. Therefore, your code should not rely on any modifications to the Makefile for correct compilation.

As a sanity check, you should use your web browser to visit your assignment repo. Make sure that what
you see in the browser is consistent what you think you have pushed.

9

