Structural Induction
Examples

1. Propositions (Later)
 a. Base Case: T, F, p, q, r, ...
 b. Recursive Step: \(~p, p \land q, p \lor q, p \rightarrow q\)

2. Polynomials
 a. Base Case: 1, x
 b. Recursive Step: \(p + q, p \ast q, c \cdot p\)

3. Binary Trees
 a. Base Case: Empty Tree, Tree with one node
 b. Recursive Step: Node with left and right subtrees

4. Strings (of Balanced Parentheses)
 a. Base Case: Empty string, ()
 b. Recursive Step: (S), S_1S_2
Principle of Structural Induction

Let R be a recursive definition.
Let S be a statement about the elements defined by R.

If the following hypotheses hold:

i. S is True for every element b_1,\ldots,b_m in the base case of the definition R.

ii. For every element E constructed by the recursive definition from some elements e_1,\ldots,e_n:

 S is True for $e_1,\ldots,e_n \Rightarrow S$ is true for E

Then we can conclude that:

iii. S is True for Every Element E defined by the recursive definition R.

Template for Proofs by Structural Induction

Prove

i. S is True for b_1,\ldots,b_n \hspace{2cm} \{Base Case\}

ii. S is True for $e_1,\ldots,e_n \Rightarrow S$ is True for E \hspace{2cm} \{Inductive Step\}

Conclude

iii. S is True for Every Element defined by R \hspace{2cm} \{Conclusion\}
Observations on Structural Induction

Proofs by Structural Induction

- Extends inductive proofs to discrete data structures -- lists, trees, …
- For every recursive definition there is a corresponding structural induction rule.
- The base case and the recursive step mirror the recursive definition.
 -- Prove Base Case
 -- Prove Recursive Step

Proof of Structural Induction

Let $T = \{ E \mid S \text{ is True for } E \}$.

- T contains the base cases
- T contains all structures that can be built from the base cases

Hence T must contain the entire recursively defined set.
Binary Trees

1. Recursive Definition
 a. Base Case: Empty Tree \(\phi \)
 b. Recursive Step: Node with left and right subtrees

2. Structural Induction
 a. If \(P(\phi) \) and \(\forall T_1, T_2 \{ P(T_1) \land P(T_2) \Rightarrow P(T) \text{ with nodes } T_1, T_2 \} \)
 b. Then \(\forall T P(T) \)

3. Size of a Tree
 a. Base Case: \(s(\phi) = 0 \)
 b. Recursive Step: \(s(T) = 1 + s(T_1) + s(T_2) \)

4. Height of a Tree
 a. Base Case: \(h(\phi) = 0 \)
 b. Recursive Step: \(h(T) = 1 + \max(h(T_1), h(T_2)) \)
Theorem: \(s(T) \leq 2^{h(T)+1} - 1 \)

Proof: By Structural Induction.

Base Case: \(s(\phi) = 0 \) and \(h(\phi) = 0 \)
\[
s(\phi) = 0 < 1 = 2 - 1 = 2^{h(\phi)+1} - 1
\]

Recursive Step: Let \(T \) be the tree with nodes \(T_1, T_2 \)

Assume: \(s(T_1) \leq 2^{h(T_1)+1} - 1 \) and \(s(T_2) \leq 2^{h(T_2)+1} - 1 \)

Must Show: \(s(T) \leq 2^{h(T)+1} - 1 \)

Structural Induction: By definition

\[
h(T) = 1 + \max (h(T_1), h(T_2)) = \max (1 + h(T_1), 1 + h(T_2))
\]

\[
s(T) = 1 + s(T_1) + s(T_2)
\]
Induction continued

\[s(T) = 1 + s(T_1) + s(T_2) \]

\[\leq 1 + \left(2^{h(T_1)+1} - 1 \right) + \left(2^{h(T_2)+1} - 1 \right) \quad \text{\{Inductive Hypothesis\}} \]

\[\leq 1 + 2 \left(2^{\max(h(T_1)+1, h(T_2)+1)} - 1 \right) \]

\[\leq 2 \left(2^{h(T)} \right) - 1 \]

\[= 2^{h(T)+1} - 1 \]
Fractals

Theorem

Every angle in a Sierpinski Triangle is 60 degrees.

Proof

Base Case: Easy.

Inductive Step: By Structural Induction.
Balanced Parentheses

1. Definition
 a. Base Case: λ (empty string)
 b. Recursive Step: $(S), S_1S_2$

2. Structural Induction
 a. $P(\lambda)$ and $\forall S_1, S_2 \{ P[S_1] \text{ and } P[S_2] \} \rightarrow P[(S)] \text{ and } P[S_1S_2]$
 then $\forall SP[S]$

3. Count Function
 a. $c[S] = \#\text{open parentheses} - \#\text{closed parentheses}$
 i. $c(\lambda) = 0$
 ii. $c[(S)] = c[S]$
 iii. $c[S_1S_2] = c[S_1] + c[S_2]$
Theorem: \(c[S] = 0 \)

Proof: By Structural Induction.

Base Case: \(c[\lambda] = 0 \)

Recursive Step;

\(c[(S)] = c[S] = 0 \)

\(c[S_1S_2] = c[S_1] + c[S_2] = 0 + 0 = 0 \)
More Strings

Recursive Definition

• Base Cases: b
• Recursive Step: aSa

Explicit Formula

• $a^n b a^n$ $n \geq 0$

Structural Induction

• If $P(b)$ and $(\forall S \ P(S) \rightarrow P(aSa))$, then $\forall S \ P(S)$
Theorem: Recursive Definition \Leftrightarrow Explicit Definition

Proof: Recursive \Rightarrow Explicit.

Every element constructed recursively is of the form $a^n b a^n$

By Structural Induction.

Base Case: $b = a^0 b a^0$.

Structural Induction:
- Suppose $S = a^n b a^n$
- Then $aSa = a(a^n b a^n) a = a^{n+1} b a^{n+1}$

Explicit \Rightarrow Recursive.

Every element of the form $a^n b a^n$ can be constructed recursively.

By Weak Induction on n.

Base Case: $n = 0 \Rightarrow a^0 b a^0 = b$ Okay.
Induction

Assume: Every element of the form $a^n b a^n$ can be constructed recursively.

Must Show: Every element of the form $a^{n+1} b a^{n+1}$ can be constructed recursively.

Observe: $a^{n+1} b a^{n+1} = a^n b a^n a = a S a$.

By the inductive hypothesis: $a^n b a^n$ satisfies the recursive definition;

Hence by the recursive step, so does $a^{n+1} b a^{n+1}$.
Polynomials

Recursive Definition

• Base Cases: $1, x$
• Recursive Step: $p + q, p \times q, c \, p$

Explicit Definition

• $p(x) = c_0 + c_1 x + \cdots + c_n x^n$

Structural Induction

• If $S(1), S(x)$ and $(\forall p, q \ S(p) \land S(q) \rightarrow S(p + q), S(p \times q), S(c \, p))$,
 then $\forall p \ S(p)$
Theorem: Recursive Definition ⇔ Explicit Definition

Proof: Recursive ⇒ Explicit.

Every element constructed recursively is of the form

\[p(x) = c_0 + c_1 x + \cdots + c_n x^n. \]

By Structural Induction.

Base Case: 1, x. Okay.

Structural Induction:
- Suppose
 \[p(x) = c_0 + c_1 x + \cdots + c_n x^n \]
 \[q(x) = d_0 + d_1 x + \cdots + d_m x^m \]
- Then \(p + q, p \ast q, c \ p \) are also of the form
 \[r(x) = e_0 + e_1 x + \cdots + e_k x^k \]
Explicit \Rightarrow Recursive.

Every polynomial

$$p(x) = c_0 + c_1 x + \cdots + c_n x^n$$

can be constructed recursively.

By Weak Induction on n.

Base Case: $\text{degree}(p) = 0 \Rightarrow p = c1$. Okay.

Recursive Step: Suppose every polynomial

$$q(x) = c_0 + c_1 x + \cdots + c_n x^n$$

of degree n can be constructed recursively.

Must Show: Every polynomial

$$p(x) = c_0 + c_1 x + \cdots + c_n x^n + c_{n+1} x^{n+1} = q(x) + c_{n+1} x^{n+1}$$

of degree $n + 1$ can be constructed recursively.

By the inductive hypothesis: $q(x)$ and x^n are can both be constructed recursively

Hence by the recursive definition so can

$$c_{n+1} x^{n+1} = c_{n+1} (x x^n) \text{ and } p(x) = q(x) + c_{n+1} x^{n+1}.$$
Structural Induction on the Natural Numbers

Recursive Definition

- Base Case: 0 is in \(N \)
- Recursive Step: if \(n \) is in \(N \), the \(s(n) = n + 1 \) is in \(N \)

Observation

- Structural Induction \(\iff \) Weak Induction

Theorem: Structural Induction on Recursive Schemes \(\iff \) Weak Induction

Proof: \(\Rightarrow \): Weak Induction follows from Structural Induction because weak induction is structural induction on the natural numbers.

\(\Leftarrow \): Structural Induction follows from weak induction by induction on the number of operations = number of recursive steps.
Structural Induction on Pairs of Natural Numbers

Lexicographic Order on $N \times N$

- Think order on two letter words
 - at, in, it, an
 - (2,3), (9,7), (2,7), (7,7)

Well Ordering on $N \times N$

- Every non-empty subset of $N \times N$ has a smallest element.
- But there are infinitely many elements smaller than any element in $N \times N$
 - List all elements less than (4,7)
Well Ordering on $N \times N$

Theorem: Every non-empty subset of $N \times N$ has a smallest element.

Proof: Let

$$S = \text{a nonempty subset of } N \times N.$$

$$S_1 = \{ s \in N \mid \text{there is a number } t \text{ such that } (s, t) \in S \}$$

$s^* = \text{smallest element in } S_1$

$$S_2 = \{ t \in N \mid (s^*, t) \in S_1 \}$$

$t^* = \text{smallest element in } S_2$

Claim: $(s^*, t^*) = \text{smallest element in } S$

Proof: $s^* = \text{smallest } s$, and for this smallest s, $t^* = \text{the smallest } t.$
Strong Induction on Pairs of Natural Numbers

Let $P(m,n)$ be a statement about the pair of integers (m,n).

If the following hypotheses hold

i. Base Case: $P(0,0)$

ii. Recursive Step: $P(a,b)$ for all $(a,b) < (c,d) \Rightarrow P(c,d)$

Then we can conclude that

iii. $P(m,n)$ is True for every pair of integers (m,n)

Proof: By Well Ordering Principle:

There is no smallest element where $P(m,n)$ is False.
Recursive Definition

- $a_{0,0} = 0$
- $a_{m,0} = a_{m-1,0} + 1$
- $a_{m,n} = a_{m,n-1} + n \quad n > 0$

Theorem: $a_{m,n} = m + n(n+1)/2$

Proof: By Strong Induction on $N \times N$.

Base Case: Obvious. ($0 = 0$)

Recursion: Two cases:

Case 1: $a_{m,0} = a_{m-1,0} + 1 = (m-1) + 1 = m$.

Case 2: $a_{m,n} = a_{m,n-1} + n = m + (n-1)n/2 + n = m + n(n+1)/2$.
Bad Recursive Definitions

Legal Definitions

• New objects must be built from objects already in the set

Incorrect Example: Strings with more 0’s than 1’s

• Base Case: 0
• Recursive Step: 0S, S0, where S has same number of 0’s and 1’s.

Observation

• This recursive definition is not legal, since S is not in the set!
• Need to tell how S is constructed!