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Abstract

A family of notorious teasers in probability is discussed. All ask for the
probability that the objects of a certain pair both have some property when
information exists that at least one of them does. These problems should
be solved using conditional probabilities, but cause difficulties in character-
izing the conditioning event appropriately. In particular, they highlight the
importance of determining the way information is being obtained. A prob-
ability space for modeling verbal problems should allow for the representa-
tion of the given outcome and the statistical experiment which yielded it.
The paper gives some psychological reasons for the tricky nature of these
problems, and some practical tips for handling them.

1. Introduction

A few years ago, one of the authors was visited by two friends, both pro-
fessors of mathematics at the Hebrew University of Jerusalem. While dis-
cussing her experience in teaching an Introductory Probability course, she
remarked that some problems, even at that elementary level, seem extremely
tricky and difficult to conceptualize correctly. Skeptically, her friends
asked for an example. She provided the following:

Problem 1

Mr. Smith is the father of two. We meet him walking along the street with
a young boy whom he proudly introduces as his son. What is the probabil-
ity that Mr. Smith’s other child is also a boy? (Falk, 1978).

*This work was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract N00014-79-312-0730 under subcontract from Decisions and Designs, Inc. to
Perceptronics, Inc. We wish to thank Baruch Fischhoff and Sarah Lichtenstein for comments on an
earlier draft. Reprint requests should be sent to Maya Bar-Hillel, The Hebrew University of Jerusalem,
Jerusalem, Israel.




110 M. Bar-Hillel and R. Falk

In chorus the two mathematicians exclaimed: “Well, what’s the problem?
The answer is obviously . Except here, one inserted ‘“‘one-third” and
the other inserted “one-half”.

Problem 1 is simple enough to be presented to students at about the third
session in an introductory course, shortly after introducing the concepts
of event-independence and conditional probability. Two possible ways of
approaching the problem immediately come to mind. One states that since
(to a very close approximation) the two sexes are equiprobable, and the
sexes of any two children (bom separately) are independent, knowing that
one of Smith’s children is a boy does not affect our probability that the
other is a boy, which was and still is one-half. Formally:

P (some child is a boy | some other child is a boy) = 1/2.

According to the second argument, before Mr. Smith identifies the boy
as his son, we know only that he is either the father of two boys, BB, or of
two girls, GG, or of one of each in either birth order, i.e., BG or GB. Assum-
ing again independence and equiprobability, we begin with a probability
of 1/4 that Smith is the father of two boys. Discovering that he has at least
one boy rules out the event GG. Since the remaining three events were equi-
probable, we obtain a probability of 1/3 for BB. Formally:

P (two boys | at least one boy) = 1/3.

Obviously, at least one of these two lines of reasoning must be fallacious.
Consider now a variant of Problem 1:

Problem 2

We meet Mr Smith (whom we know to be the father of two) in the street
with a boy. This time, he is more elaborate in his introduction, presenting
the boy as his eldest child. What is the probability that Mr. Smith’s other
child is also a boy? (Falk, 1978).

Here, both approaches—considering the independence of children’s sex
and enumerating the possibilities remaining after the obtained information
is registered—Ilead to an answer of 1/2.

The convergence of solutions to this second problem need not, however,
force your position on Problem 1. For one could maintain that as informa-
tion is added, it is appropriate that the requested probability changes. On
the other hand, one might favor the position that since the probability that
Mr. Smith has two sons would clearly have been the same had we found out
that the child was in fact the youngest, it shouldn’t affect the requested
probability. The question seems to boil down to whether the additional
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information concerning the birth order of the accompanying son is or isn’t
relevant to the event of Mr. Smith’s having two sons.

2. A related puzzie

A similar puzzle, formulated in terms of a card problem, has been making
the rounds for some decades (see Gridgeman, 1967, for a historical survey).

Problem 3

A deck of four cards consists of the ace of spades, the ace of clubs, the
deuce of spades, and the deuce of clubs. A hand of two cards is randomly
dealt from this deck. What is the probability that it contains both aces if
we know it contains at least one?

The answer to this problem is traditionally agreed upon to be 1/5, follow-
ing the reasoning that five equiprobable hands are compatible with the
conditioning event (only the double deuce hand is ruled out), and just one
of these contains both aces.

Now compare Problem 3 to the following:

Problem 4

Like Problem 3, but the question is: What is the probability that the hand
contains both aces if we know it contains the ace of spades?

By the traditional reasoning, since three of the six initially possible hands
are eliminated, the answer is 1/3. The conjunction of Problems 3 and 4 poses
a puzzle, however, since it seems that irrelevant information has nevertheless
affected the probability that the hand has another ace. The information is
deemed irrelevant, since the answer to Problem 4 clearly does not depend
on whether the stated suit of the known ace is spades or clubs (see Gamow
and Stern, 1958; Gardner, 1959).

The similarity of the Second-Ace problems to the Second-Son problems
should be apparent. In fact, the two pairs of problems are nearly isomorphic,
with the two dichotomous variables of sex and birth order being replaced
by card value and suit, respectively. The difference is that any hand which
includes two of the four cards is feasible, but not so any type of family of
two. You can’t have a family in which the first-born is a male, while simul-
taneously the first-born is a female. That is why the sample space contains
six points in the card problems, and only four in the family problems.
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3. Analysis of the problems

Information and how it is obtained

In order to gain a better grip on Problem 1, let us consider its story again.
How exactly did we obtain the information that Mr. Smith has ‘at least
one boy’? What were the specific conditions of the ‘statistical experiment’
which gave rise to that datum? Recall that we met Mr. Smith walking in the
street in the company of a son of his. In order to proceed, one has to spell
out some assumptions about the ‘real world’ which would tie our possible
observations to the kind of family which Smith might have. In the absence
of additional information, it is natural to assume that, when setting out on
a walk with one of his two children, Mr. Smith selects the child at random.
Let us denote the datum obtained in this meeting with Mr. Smith by By,
(we met a Boy). Table 1 presents the probabilities of all combinations of
family type crossed with the sex of the accompanying child. It can easily
be seen that:
P(BBIB,,) = 1/4—1/2
(BBIBp,) 12 .

Likewise,
P(BGIB,,) = P(GBIBy) = 1/4, and P(GGIB) = 0.

Contrary to the second approach to Problem 1, which viewed the three
remaining family types as equiprobable, they are seen not to be. Realizing
that a father of two boys is more likely to pick a boy for a walking com-
panion (in fact, itisa certainty) than is a father of a boy and a girl (in which
Case it is a toss-up), it becomes clear that the observation By, renders the
event BB more probable than either BG or GB.!

It is essential to notice that the conditioning event should be phrased not
as ‘Mr. Smith has at least one son’, but rather as ‘a randomly encountered
child of Mr. Smith is a son’. Under the usual assumptions, the former has a
probability of 3/4, the latter of 1/2.

Table 2 gives the probabilities of all combinations of family type crossed
with sex and birth order of accompanying child. Note that by summing the
probabilities in the two upper lines of Table 2 column by column, one gets

! This becomes even more apparent by carrying the case to the extreme. Suppose that Smith is
known to be either the father of ten boys, or of one boy and nine girls. We meet him in the street in
the company of a son. We should be more confident that he has sons at home rather than daughters,
since the ten-boy family is ten times as likely to yield our observation as the nine-girl and one-boy
family.
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Table 1. Probabilities of combinations of family type with sex of companion (Prob-

lem1l)
Smith’s family type
Sex of accompanying child BB BG GB GG Total

1 12 1 1.1 1 1 1 1 1
= meetaB ~xl= —x=== —Xz== - x0= =
Brn = meet a Boy 4 1 4 4 2 8 4 2 8 4 0 2
1 1.1 1 1.1 1 1 1 1
= G —-X0= - —-=— —X—-=- — -— —-
G = meet a Girl 3 0=0 25378 25373 2 x1 2 2

. 1 1 1 1

l -— — pu— —_—
Total 7 7 1

3pach cell entry gives the probability of the conjunction of the column event with the row event.

1 1
Thus, P(BB " By,) = P(BB)-P(B,|BB) = n X1= e

Table 2.  Probabilities of combinations of family types with sex and birth order of
companion (Problem 2)

. Smith’s family type
Sex and birth order of

accompanying child BB BG GB GG Total
1 1 1 1 1 1 1 1
B! = meet Ist-born B Sx-—== Sx—== ~x0=0 Xx0=0 =
m = meet Ist-born Boy 25278 25378 2 4
1 1 1 1 1 1 1 1 1
B, = meet 2nd-b Sx===- ~x0=0 Sxz== Zx0=0 =
m’ = meet Znd-born Boy 35278 a4 47278 4 4
1 1 1 1 1 1 1 1 1
Gg! = meet Ist-born Girl ~%x0=0 ~x0=0 “x=== Sx-—=- -
m = /meet stbom it 4 4 25278 a2 8 4
1 1 1 1 1 1 1 1 1
G2 = t 2nd- Gi -Xx0=0 -X—== -x0=0 ~X==— -
m_ = meet 2nd-born Girl 3 25278 " 25378 2
Total l -1— -l— l 1
4

the probabilities in the upper line of Table 1. Likewise, summing the num-
bers in the third and fourth lines of Table 2 yields the second line of Table 1.
The solution to Problem 2 may now be confirmed by reference to Table 2:
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1/8
P(BBIB,,") = %ﬁ 1/2, where B,' denotes: we met a Ist bom Boy.

Thus, although the information obtained in Problem 1 left three candi-
dates for Smith’s family type (BB, BG, and GB), whereas that of Problem
2 left only two (BB and BG), the posterior probability of the event BB is
the same, 1/2, in both. Our analysis seems to suggest that this results from

the fact that the sample space {BB, BG, GB, GG} is not really suitable for
modeling our problems, in a sense that will be elaborated in the following
subsection. For the time being, we can rely on the 8-point (16-point) sample
space in Table 1 (2), which was derived from {BB, BG, GB, GG} by parti-

randomly!) from one boy and one girl. In this culture, the observation Bn
does not render BB more probable than BG or GB.

Another version of the Second-Son problem is presented by Gardner
(1959, p. 51): ‘Mr Smith says, “I have two children and at least one of them
is a boy”. What is the probability that the other child is a boy?’ Gardner

Bs, is altogether different than discovering that fact on the basis of observing
only one of his children. For Mr. Smith, unlike the reader, presumably is
aware of the sex of both his children when making this statement. If, for
example, Mr. Smith has one boy and one girl, it is necessarily true that he
has at least one boy (Gardner’s version), but it is not necessarily true that
we will meet him accompanied by a male child (our version). Formally
speaking, no event in the sample space {BB, BG, GB, GG} corresponds to
Bm, whereas B corresponds to {BB, BG, GB}. Gardner’s version would
become formally equivalent to Problem 1 only if we adopt some assumption
like the ‘male oriented’ culture above.

Let us now apply this analysis to Problems 3 and 4. Note that although
both these problems state that we know something, they give no clue as
to how this knowledge was obtained, a crucial ingredient for selecting the
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appropriate model. Without it, the problem’s formulation leaves the precise
interpretation underdetermined. In an elegant exposition, Freund (1965)
attempted to fill this gap by describing two alternative procedures whereby
such knowledge could come to be acquired. He conjured a hypothetical
spy, operating in one of the two following methods:

Case [
The spy looks at our opponent’s entire hand; he reports whether or not he
sees (at least) one ace [Problem 3], or he reports the suit (flipping a coin to decide
whether to report spades or clubs when he sees both aces in our opponent’s hand)
[Problem 4] .

Case IT
The spy has the chance to see only one card (randomly selected from our oppo-
nent's hand) and he either reports whether or not it is an ace [Problem 3], or he
also reports the suit [Problem 4] (p. 29, emphasis added).

By applying Bayes’ Theorem, or by constructing the appropriate two-
dimensional probability distributions, the reader can verify the following
results. Case I: When the suit is not reported (Problem 3), the five remaining
hands stay equiprobable, so the solution is 1/5. When the suit is reported
(Problem 4), the three remaining hands are no longer equiprobable. How-
ever, since the posterior probability of the hand with both aces is only half
that of either of the other two remaining hands (which contain a deuce
along with the ace of spades), the solution is still 1/5. Case II: Here, whether
the posterior probabilities remain equiprobable, (Problem 4) or not (Prob-
lem 3), the probability of two aces is 1/3. In either case, the same answer
is obtained to both problems, and ‘the paradox has vanished’ (Freund,
1965). Other scenarios are possible, including one that would yield an
answer of 1/5 to Problem 3 and of 1/3 to Problem 4. Some scenario, in any
case, is called for, since otherwise, the story is incomplete.?

Recall the isomorphism of Problems 1 and 2 to Problems 3 and 4. Since
we adopted the assumption that Smith selected the child in his company at
random, the analogy is to the Case Il interpretation of Problems 3 and 4.
The assumption that a male is selected whenever possible would render
Problems 1 and 2 analogous to the Case I interpretation of Problems 3 and 4.

2Freund’s paper prompted a series of over half a dozen letters which were published in The Amer-
ican Statisticigan in a space of two years following his own. They offer a wide variety of solutions and
approaches. An analysis similar to Freund’s can be found in Betteley (1979).
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Information and its relevance

So far, we have solved Problems 1—4 by carefully considering the statistical
experiment underlying them. We have not yet dealt with another puzzling
aspect of these problems, concerning the relevance of adding further specific
information. In particular, should information about the birth order of Mr.
Smith’s son® affect the required probability? On the other hand, it seems
that it should, since it clearly affects the number of possibilities that are
eliminated. On the other hand, it seems that it shouldn’t, since the answer
is independent of the stated birth order. If the probability of an event is
the same when conditioned on two complementary events—as ‘eldest’ and
‘youngest’ seem to be—then it must also equal the unconditioned (i.e.,
the total) probability, since P(A) = P(A|B)-P(B) + P(A|B)- P(B).

To examine this issue, let us return to Gardner’s ‘at least one of them is
a boy’ version. After offering 1/3 as the probability that Smith has two boys,
Gardner goes on to say: ‘{H]ad Smith said that his oldest ... child is a boy,
then the situation is entirely different. Now the combinations are restricted
to BB and BG, and the probability that the other child is male jumps to 1/2’
(p. 51). Indeed, the additional information about the son’s birth order, by
affecting the number of remaining possibilities, but not their relative odds,
affects the required probability. In our version (Problems 1 and 2), how-
ever, as soon as we observe Mr. Smith with a son, ‘the probability that the
other child is male jumps to 1/2’ (Gardner, 1959). Moreover, it jumps no
further when we learn the birth order of that son. Why it that? How does
the probability in Problem 1 jump to 1/2 without Mr. Smith supplying us
with any particular information about his son?

Let us analyze the role that birth order plays in this kind of problem.
The intuitive sample space for Problems 1 and 2 consists of the elementary
events {2 boys, 2 girls, 1 girl and 1 boy}. Unfortunately, this space is not
uniform. Introducing birth order partitions ‘1 girl and 1 boy’ into two
equiprobable events, transforming the sample space into the uniform {BB,
GG, BG, GB}. The success of the birth order variable in achieving this end
hinges on its independence of the sex variable. But other distinguishing
variables that are independent of sex could be employed for the same
purpose. For example, one could distinguish between families in which the
darker child is male and the fairer is female versus families in which the
fairer child is male and the darker is female. When no natural variable is
present, one may wish to impose one. One such, for example, is the designa-

3From here on, we will no longer use the double reference to-the Second-Ace problems as well as
the Second-Son problems. The readers are encouraged to draw the analogies themselves.
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tion of dice by color (e.g., ‘blue’ and ‘red’) in problems involving more than
one die. In yet other cases, a problem is formulated in terms of some such
variable, but its role is implicit, or even disguised. Problem 1 is a case in
point.

In dealing with this problem heretofore, we have resorted to the (birth)
ordered pairs of sexes. We were aware that the conditioning event B,, was
unexpressible within this sample space. Yet, we were surprised that the mere
encounter with Mr. Smith’s son, though unidentified by birth order, achieved
the same effect on the probability of BB that Gardner’s version achieved
only when birth order was supplied. By labeling the child we met as his
oldest, Mr. Smith distinguishes him from the other one. But why need Mr.
Smith supply us with a label for distinguishing the child we met from the
child at home? We can supply the label ourselves, namely ‘the child we
met’! When the unaccompanied Mr. Smith says ‘““at least one of my two
children is a boy”’, we have no way of telling which one he is talking about
—at least until he adds that it is his oldest. Whereas, when we meet a son
of Smith’s, we know not only that he has at least one boy, but also precisely
which one of them (at least) is a boy——to wit, the one we met.*

This suggests that we model Problems 1 and 2 using the following probab-
ility space. Denote the child whom Smith left at #ome by a subscript h, and
the child we meet with him by a subscript m. This yields a uniform sample
space for describing Smith’s family structure:

{BmBh’ BmG]’h GmBh) GmGh}

Upon encountering Mr. Smith in the company of a male offspring, G, Gy,
and Gy, By are ruled out. This is tantamount to saying that the conditioning
event By, equals the subset {B,, Gy, BnBrl}. In this case, the events in the
conditional sample space preserve their equiprobability, and so the revised
probability that Mr. Smith has two sons is 1/2 (see also Jeffrey, 1968). It
is now easy to see why adding the information that the son we meet is
first-born increases the probability of BB no further. It is irrelevant in the
terms in which the sample space is construed. Mr. Smith might as well have
said: “This is my son, and his name is Jim’. While it is hard to shake our-
selves loose of the powerful habit of employing birth order for analyzing
such problems, in this case birth order is but a red herring.’

_ *This reminds us of the story about the man who could not tell his two horses apart. After a series
of failures to mark one of them in a manner that would set it apart from the other, he finally decided
to sell the black horse and keep the white one.

5 This is not to deny that the habit has a lot to commend it. Birth order enjoys the distinct advan-
tages of being discrete, salient, compatible with the sequential flow of speech and writing, etc.
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4. The prisoner’s paradox

Another classic puzzler in probability theory (not to be confused with the
Prisoner’s Dilemma of Game Theory) is closely related to Problems 1—4
(see, for example, Beckenbach, 1970; Mosteller, 1965).

Problem 5

Tom, Dick and Harry are jailed in separate cells. Early the next momning,
one of them will hang and two will be set free. A lottery has already de-
termined the unfortunate one, but the night guard is not allowed to inform
any prisoner of his fate. Dick can’t sleep. He puts his chances for hanging
at 1/3, too big for comfort. If he could just obtain some more information!
Dick manages to convince the guard that by naming either Tom or Harry
as one of those to be freed, he will not be violating his instructions. Dick
bribes the guard into indulging him, and the guard names Harry. What is the
current probability that Dick will hang?

Since at this point, only Tom and himself are still candidates for hanging,
Dick judges his probability of hanging to have increased to 1/2. Suppose,
however, that the guard had named Tom as the lucky prisoner. By the same
token, this piece of information would also have increased Dick’s probabil-
ity of hanging to 1/2.

It looks like whatever information the guard discloses affects Dick ad-
versely. Indeed, the very mental exercise of imagining the exchange with
the guard appears to increase his probability of dying! What is going on?

To extricate Dick from this diabolical mess, let us apply the lesson gained
in the previous sections. The agreement that Dick strikes with the guard
implicitly assumes that the guard has no bias for naming either Tom or
Harry, i.e., that if both are to be set free, they have an equal chance of
being named.

Let T, D, and H denote the respective events that Tom, Dick, or Harry
will be hanged, and let P-Ig and Tg be the guard’s designating Harry or Tom,
respectively, as one who will be freed (i.e., not hanged). Then,

P(HgID) = 1/2; P(HgiH) = 0; P(HyT)=1.. .
In other words, the event that Harry will be named is not independent of

the possibilities D and T. Employing these probabilities in a Bayesian compuw
tation will not, therefore, yield equal posterior probabilities for D and for T:
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P(H,ID)P(D)
P(H,ID)P(D) + P(H;IH)P(H) + P(H,IT)P(T)
_ (1/2)(1/3) _
T (1/2)(1/3)+0(1/3) + 1(1/3)

P(DIH,) =

1/3.

3y a similar computation,
P(TII—-I_g) = 2/3, and P(Hlﬁg) =0.

So Dick’s probability of hanging really is unaffected by the guard’s
naming of Harry. The key to this conclusion lies in the realization that the
conditioning event Hg is defined not merely by the information obtained
(i.e., H), but by the way in which it was obtained as well.

Here, too, it is possible to construct a statistical experiment which would
seem to yield the same information, and yet increase Dick’s probability of
hanging. Suppose the guard has agreed to the following procedure: He will
toss a coin. If Heads, he will report Harry’s fate, whatever it is. If Tails,
he will report Tom’s fate. If Dick now hears ‘Harry will be freed’, his prob-
ability of hanging does change to 1/2.

5. The three-card problem

We conclude our presentation of probabilistic teasers with one last problem.
This well-known problem appears in many variations (see, for example,
Frauenthal and Saaty, 1979; Gamow and Stern, 1958). Although here the
statistical experiment is explicit and transparent, the problem remains an
intuitively misleading one.

Problem 6

Three cards are in a hat. One is red on both sides, denoted RR. One is white
on both sides, denoted WW. One is red on one side and white on the other,
denoted RW. We draw one card blindly and put it on the table. It shows a
Red face up, denoted R,. What is the probability that the hidden side is
also red? :

We presented this problem to 53 Psychology freshmen taking one of our
Introductory Probability courses. Thirty-five of them (66%) gave an answer
of 1/2, apparently reasoning as follows: The card is definitely not WW, so it
is either RR or RW. Since it was drawn randomly, these cards are equiprob-
able.
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By now, the reader probably senses the fallaciousness of attributing poste- |
rior equiprobability to the remaining events. Clearly, an all-red card is twice
as likely to show a red face up as a card that only has one red side. Hence,
by Bayes’ Rule, P(RR|R,) = 2/3. Only three of our respondents gave this
answer.

6. Conclusion

We have presented and analyzed a set of notorious teasers in Probability
Theory. We pointed out some analogies among the different problems, and
among their solutions. They all ask for the probability that the objects of
a certain pair both have some property when information exists that at
least one of them does. All, implicitly or explicitly, make reference to the
manner in which that information was obtained, wherein lurks a potential
source of difficulty,

We illustrated how different scenarios for obtaining some information
yielded different solutions. In other words, the way we ‘model’ a problem
is strongly dependent on the answer to the question: ‘How was the informa-
tion obtained?’ On occasion, however, this dependence has been denied. Thus
Neisser (1966), in a criticism of Freund’s (1965) paper, said:

"The so-alled ‘puzzle’ clearly states the information available. ... Hence, the result
must be independent of the particular way in which the information was obtained
... Indeed, if the way in which information is obtained is allowed to influence the
results, there is no end to possible modifications.’ (p. 37).

Contrary to Neisser’s claim, we showed that different ways of obtaining
the selfsame information can significantly alter the revision of probability
contingent upon it. All our problems highlighted the difference between
knowing that at least one of two objects has some property on the basis of
observing both, versus observing only one.

While it is sometimes natural or convenient to distinghuish between ob-
tained information and the means whereby it was obtained, this distinction
is often tenuous. Furthermore, the inclination to identify the conditioning
event with the former automatically is fallacious. Such an identification can
be justified only upon verification against the statistical experiment. Infor-
mation cannot, as a rule, be divorced from its sources, and to do so can have
devastating consequences. B

The kind of problem in which the conditioning event does turn out to
be identical to what is perceived as ‘the information obtained’ can only be
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found in textbooks. Consider a problem which asks for ‘the probability of A
given B’. This nonepistemic phrasing sidesteps the question of how the event
B came to be known, since the term ‘given’ supplies the conditioning event,
by definition. For example, the answer to the question: ‘What is the prob-
ability that “Smith has two sons™ given “Smith has at least one son”?’ is
(under the standard assumptions) unequivocally 1/3. Outside the never-never
land of textbooks, however, conditioning events are not handed out on
silver platters. They have to be inferred, determined, extracted. In other
words, real-life problems (or textbook problems purporting to describe real
life) need to be modeled before they can be solved formally. And for the
selection of an appropriate model (i.e., probability space), the way in which
information is obtained (i.e., the statistical experiment) is crucial.

We mentioned above that the sense of paradox which emanates from
these problems is not completely resolved when we construct a successful
model. Remember that in our presentation, the riddle posed by Problem 2
versus Problem 1 was: ‘How can information which seems relevant (birth
order) fail to affect the required probability?’, whereas in Problem 4 versus
Problem 3, it was: ‘How can information which seems irrelevant (card suit)
affect the required probability?’ Once the correspondence between card suit
and birth order becomes evident, a third riddle springs forth, namely:
‘What’s going on? Is birth order (card suit, name of lucky prisoner, card’s
upfacing color) relevant, or isn’t it? Can it be one way for one problem,
and another for a different, though almost identical, problem?’ In fact,
an effect which is startlingly similar to the reversible-figure effect in percep-
tion can be set up, whereby one can endlessly vacillate between two incom-
patible diagnoses of what the matter with these problems even is! '

This lingering sense of paradox is due, we believe, to our intuitive notions
of relevance. The puzzle which one perceives in these problems is largely
determined by which of the following rules of thumb for relevance they
highlight. (i) Information is relevant if it alters the conditioned sample
Space (as the addition of birth order narrowed it down from {BB, BG, GB}
to {BB, BG}). (ii) Information is irrelevant if it doesn’t matter which of its
aiternative values is supplied (as when stating the card suit as spades versus
Clubs).

Our problems have shown why neither of these criteria can serve as a
definitive characterization of relevance. Sometimes a sample space may be
altered upon the addition of information, but along with it the odds are
altered as well, leaving the target probability unaffected. And sometimes the
alternative possible values of the additional information are not really com-
Plementary events in the appropriate sample space; therefore, their sym-
Mmetry need not lead to independence.
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Résumé

L'article porte sur un groupe de casse-téte bien connus en probabilité. Dans tous ces problémes la
question posée concernc la probabilité pour deux éléments d'unc paire de posséder une caractéristique
ctant donné I'information qu’un des ¢léments de la paire posséde. L'utilisation des probabilités condi-
tionnelles permet de résoudre ces problémes mais leur caractérisation correcte est difficile. En effet,
ces problémes soulignent 'importance de la maniére dont 'information est obtcnue. Une cspéce de
probabilité moddlisant les problémes verbaux devrait permettre la représentation du résultat obtenu
et de 'expérience statistique qui le produit. On donne les raisons psychologiques qui rendent compte
de la nature fallacicuse de ces problémes et des moyens pratiques pour cn venir a bout.




