
Java Generics – Wildcards

By: Anupam Chanda



2

Generics and Subtyping

We start to run into some new issues when we do some things that seem 
“normal”. For instance, the following seems reasonable:
Box<Number> numBox = new Box<Integer>(31);

Compiler comes back with an “Incompatible Type” error message.

This is because numBox can hold only a Number object and nothing else, 
not even an object of type Integer which is a subclass of Number. 

Box<T> is not a subclass of Box<E> even if T is a subclass of E. 

//Consider the following lines of code

Box<String> strBox = new Box<String>(“Hi”);//1

Box<Object> objBox = strBox;//2 – compilation error

objBox.setData(new Object());//3

String s = strBox.getData();//4 – an Object to a String!



3

Unbounded Wildcards
We want to write a method to print any Box.

public static void printBox(Box<Object> b) {

System.out.println(b.getData());

}

Box<String> strBox = new Box<String>(“Hi”);

printBox(strBox);//compilation error

public static <T> void printBox(Box<T> b) {

System.out.println(b.getData());

}//parameterized method

public static void printBox(Box<?> b) {

System.out.println(b.getData());

}//using unbounded wildcard



4

Unbounded Wildcards (Contd.)
Box<?> is a superclass of Box<T> for any T.

Box<?>

Box<Integer> Box<String> Box<Object>

Unbounded wildcards are useful when writing code that is completely 
independent of the parameterized type.



5

Upper Bounded Wildcards

“A Box of any type which is a subtype of Number”.

Box<? extends Number> numBox = new Box<Integer>(31);

Box<? extends Number>

Box<Number> Box<Integer> Box<Double>

<? extends E> is called “upper bounded wildcard” because it 
defines a type that is bounded by the superclass E.



6

Upper Bounded Wildcards (Contd.)

public class Box<E> {

public void copyFrom(Box<E> b) {

this.data = b.getData();

}

}

//We have seen this earlier

//We can rewrite copyFrom() so that it can take a box 

//that contains data that is a subclass of E and 

//store it to a Box<E> object

public class Box<E> {

public void copyFrom(Box<? extends E> b) {

this.data = b.getData();//b.getData() is a

//subclass of this.data

}

}

Box<Integer> intBox = new Box<Integer>(31);

Box<Number> numBox = new Box<Number>();

numBox.copyFrom(intBox);



7

Lower Bounded Wildcards
“A Box of any type which is a supertype of Integer”.

Box<? super Integer>

Box<Number> Box<Integer> Box<Object>

<? super E> is called a “lower bounded wildcard” because it defines a type 
that is bounded by the subclass E.



8

Lower Bounded Wildcards (Contd.)

Suppose we want to write copyTo() that copies data in the opposite 
direction of copyFrom().
copyTo() copies data from the host object to the given object.

This can be done as:
public void copyTo(Box<E> b) {

b.data = this.getData();

}

Above code is fine as long as b and the host are boxes of exactly same type.
But b could be a box of an object that is a superclass of E.

This can be expressed as:
public void copyTo(Box<? super E> b) {

b.data = this.getData();

//b.data() is a superclass of this.data()

}

Box<Integer> intBox = new Box<Integer>(31);

Box<Number> numBox = new Box<Number>();

intBox.copyTo(numBox);


