COMP 321: Introduction to Computer Systems

Project 3: Malloc
Assigned: 3/6/25, Due: 3/27/25

Important: This project must be done individually. Be sure to carefully read the course policies for
assignments (including the honor code policy) on the assignments page of the course web site:

http://www.clear.rice.edu/comp321/assignments.html

Overview

In this lab you will be writing a dynamic memory allocator for C programs, i.e., your own version of the
malloc, free, and realloc routines. You are encouraged to explore the design space creatively and
implement an allocator that is correct, efficient, and fast.

Project Description

Your dynamic memory allocator will consist of the following four functions, which are declared in mm. h
and defined in mm. c.

int mm_init (void) ;

volid *mm_malloc(size_t size);

void mm_free(void x*ptr);

void *mm_realloc (void xptr, size_t size);

The mm. c file that we have given you implements a simple memory allocator based on an implicit free
list, first-fit placement, and boundary-tag coalescing, as described in the CS:APP3e text. Using this as a
starting place, modify these functions (and possibly define other private static functions), so that they
obey the following semantics:

e mm_init: Before calling mm malloc, mm_-realloc, or mm_free, the application program (i.e.,
the trace-driven driver program that you will use to evaluate your implementation) calls mm_init to
perform any necessary initialization, such as allocating the initial heap area. The return value should
be -1 if there was a problem in performing the initialization, and 0 otherwise.

The driver will call mm_init before running each trace (and after resetting the brk pointer). There-
fore, your mm_init function should be able to reinitialize all state in your allocator each time it is
called. In other words, you should not assume that it will only be called once.

* mmmalloc: The mm_malloc routine returns a pointer to an allocated block with a payload of at
least size bytes that begins at an 8-byte aligned address. The entire allocated block should lie within
the heap region and should not overlap with any other allocated chunk.



COMP 321: Introduction to Computer Systems Project 3: Malloc

* mm_free: The mm_free routine frees the block pointed to by ptr. It returns nothing. This rou-

tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm-malloc ormm_realloc and has not yet been freed.

* mm-realloc: The mm_realloc routine returns a pointer to an allocated block with a payload of

at least size bytes with the following constraints.

— if ptr is NULL, the effect of the call is equivalent to mm malloc (size);

— if size is equal to zero, the effect of the call is equivalent to mm_free (ptr) and the return

value is NULL;

if ptr is not NULL, it must have been returned by an earlier call to mmmalloc or
mm_realloc. The call to mm_realloc changes the size of the memory block pointed to
by ptr (the old block) to provide a payload of size bytes and returns the address of the new
block. The address of the new block might be the same as the old block, or it might be different,
depending on your implementation, the amount of internal fragmentation in the old block, and
the size of the realloc request.

The contents of the new block are the same as those of the old pt r block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 32 bytes
and the new block is 48 bytes, then the first 32 bytes of the new block are identical to the first
32 bytes of the old block and the last 16 bytes are uninitialized. Similarly, if the old block is 32
bytes and the new block is 16 bytes, then the contents of the new block are identical to the first
16 bytes of the old block.

These semantics match those of the corresponding 1ibc malloc, realloc, and free routines with
one exception: If size is equal to zero, the mm_malloc and mm_realloc routines return NULL!. Type
man malloc for complete documentation.

Heap Consistency Checker

Dynamic memory allocators are notoriously tricky to program correctly and efficiently. They are difficult to
program correctly because they involve a lot of untyped pointer manipulation. You will find it very helpful
to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

Is every block in the free list marked as free?

Are there any contiguous free blocks that somehow escaped coalescing?
Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

Do the pointers in a heap block point to valid heap addresses?

'Instead, the C standard specifies that malloc and realloc return a valid pointer, not NULL, when size is equal to
zero. However, implementing the standard behavior is slightly more complex than returning NULL, and it doesn’t teach you any
additional lessons, so we chose not to specify it.



COMP 321: Introduction to Computer Systems Project 3: Malloc

Your heap checker will consist of the function void checkheap (bool verbose) inmm.c. This
function should check any invariants or consistency conditions that you consider prudent. It should print out
a descriptive error message when it discovers an inconsistency in the heap. You are not limited to the listed
suggestions nor are you required to check all of them.

This consistency checker is intended to help you with debugging your memory allocator during devel-
opment. However, the provided implementation of checkheap is only suited to a memory allocator that is
based on an implicit free list. So, as you replace parts of the provided memory allocator, you should update
the implementation of checkheap. Style points will be given for your checkheap function. Make sure
to put in comments and document what you are checking.

When you submit mm. c, make sure to remove any calls to checkheap as they would likely reduce
your throughput score!

Support Routines

The memlib. c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions in memlib. c:

* void »mem_sbrk (intptr_t incr): Expands the heap by incr bytes, where incr is a posi-
tive non-zero integer and returns a generic pointer to the first byte of the newly allocated heap area. If
there is an error, it returns (void *)-1. The semantics are identical to the Unix sbrk function, except
that mem_sbrk accepts only a positive integer argument.

* void *mem_heap_lo (void): Returns a generic pointer to the first byte in the heap.
* void *mem_ heap_hi (void): Returns a generic pointer to the last byte in the heap.
* size t mem heapsize (void): Returns the current size of the heap in bytes.

* size_t mem_pagesize (void): Returns the system’s page size in bytes (4K on x86-64 Linux
systems).

Getting Started

Please visit the web page at https://classroom.github.com/a/w2gzcD59. (If you are copying
this URL, do not include the period at the end of the sentence, as it is not part of the URL.) This page should
say “RICE-COMP321-S25-Classroom” and “Accept the assignment — Malloc”. Moreover, it should have
a green button labeled “Accept this assignment”?. Please accept the assignment.

Upon accepting the assignment, you will be redirected to another web page. This page will confirm that
you have accepted the assignment, and it will eventually (after you click refresh) provide you with a link to
your personal repository for the assignment. Click this link to go to your personal repository.

The web page for your personal repository has a green button labeled “Code”. Click this button. You
should now see a text field with a URL. Copy or remember this URL.

Login to the CLEAR system if you have not already done so, and type the following:

git clone [Copy the URL for your repo here]

You will be prompted for your github username and password.
Once the clone operation is complete, you will have a directory named

2You may have to login to GitHub to see this page. If so, you will be prompted for your GitHub username and password.



COMP 321: Introduction to Computer Systems Project 3: Malloc

malloc—[YOUR github ID]

Please cd into this directory, and do the following:

* Type your name and NetID in the header comment at the top of mm. c.

* Type the command make to compile and link a basic memory allocator, the support routines, and the
test driver.

Looking at the mm. c file, you will see that it contains a functionally correct (but very poorly performing)
memory allocator. Your assignment is to modify this file to implement the best memory allocator that you
can.

The Trace-driven Driver Program

The driver program mdriver. c tests your mm. c package for correctness, space utilization, and through-

put. The driver program is controlled by a set of trace files that are available in the comp321 course directory

(config.h indicates their location). Each trace file contains a sequence of allocate, reallocate, and free

directions that instruct the driver to call your mm_malloc, mm_realloc, and mm_free routines in some

sequence. The driver and the trace files are the same ones that we will use when we grade your mm. c file.
The driver mdriver . c accepts the following command line arguments:

* —t <tracedir>: Look for the trace files in directory t racedir instead of the default directory
defined in config.h.

* —f <tracefile>: Use one particular t racefile for testing instead of the default set of trace-
files.

* —h: Print a summary of the command line arguments.
* —v: Verbose output. Print a performance breakdown for each tracefile in a compact table.

e —V: More verbose output. Prints additional diagnostic information as each trace file is processed.
Useful during debugging for determining which trace file is causing your malloc package to fail.

Programming Rules

* You should not change the interface to any function declared in mm.h or memlib.h.

* You should not invoke any memory-management related library calls or system calls. Therefore, you
may notusemalloc, calloc, free, realloc, sbrk, brk, or any variants of these calls in your
code.

* You are not allowed to define any global or stat ic variables that are arrays or structs in your mm. c
program. However, this does not mean that you are prohibited from using arrays and structs, only that
the memory for holding them must come from your heap. You are allowed to declare a small number
of scalar global variables such as integers, floats, and pointers in mm. c.



COMP 321: Introduction to Computer Systems Project 3: Malloc

* You are permitted to study the trace files and use your observations about them to inform the design
of your dynamic memory allocator. Moreover, if you are implementing Method 3, “segregated free
list”, for keeping track of free blocks, you may use your observations to determine the number of
free lists and the size range for each free list. However, your implementations of mm_malloc and
mm_realloc are not allowed to explicitly test for any allocation sizes from the trace files, for exam-
ple, if (size == 456) ..., unless that test is being used to select a free list under Method 3. Likewise,
you are not allowed to test for which trace file is being executed.

* Your allocator must always return pointers that are aligned to 8-byte boundaries. The driver will
enforce this requirement for you.

Notes

* Use the mdriver —f option. During initial development, using tiny trace files will simplify debug-
ging and testing. We have included two such trace files (short{1, 2}-bal . rep) that you can use
for initial debugging.

* Usethe mdriver —v and -V options. The —v option will give you a detailed summary for each trace
file. The —V will also indicate when each trace file is read, which will help you isolate errors.

* Use a debugger. A debugger will help you isolate and identify out of bounds memory references.

* Understand every line of the provided malloc implementation. The lecture notes and the textbook
describe how this simple implicit free list allocator works. Don’t start working on your own allocator
until you understand everything about this simple allocator.

* Do your implementation in stages. The first 9 traces contain requests to malloc and free. The
last 2 traces contain requests for realloc, malloc, and free. We recommend that you start
by getting your malloc and free routines working correctly and efficiently on the first 9 traces.
Only then should you turn your attention to the realloc implementation. The provided realloc
implementation works by simply calling your malloc and free routines. But, to get really good
performance, you will need to build a smarter realloc that calls malloc and free less often.

* Don’t forget what you've learned before. There are many ways to write the code to manipulate pointers
to insert and remove free blocks from a free list. The most complex and error-prone way would be
to use the provided macros to try and manipulate raw memory as pointers. Consequently, we will
deduct a significant number of style points for manipulating pointers in this way. A better way would
be to define a st ruct that contains next and previous pointers and cast block pointers into pointers
to that st ruct. This is a common and important idiom in C. Where have you done something like
that before?

* Use a profiler. You may find gprof and/or gcov helpful for optimizing performance.

* Start early! 1t is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!



COMP 321: Introduction to Computer Systems Project 3: Malloc

Turning in Your Assignment

To turn in your code and writeup, you must use git push to copy your work to the github remote
repository. We will only look at the last version that you pushed before the deadline. As a precaution
against accidental loss of your code or writeup, we encourage you to push periodically. Please note, the
only files that you need to turn in are mm. ¢ and writeup. txt. In other words, these are the only two files
on which you should ever perform git add. We will only use your mm. c along with the original files that
were handed out to test your code, so you should not add or modify code in any other file (except during
testing, as necessary).

Evaluation

The project will be graded as follows:

* Performance (70 points). You will receive zero points for performance if your solution fails any of
the correctness tests performed by the driver program, if you break any of the programming rules, or
if your code is buggy and crashes the driver program.

Otherwise, your performance score will be based on the following two metrics:

— Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated via mm_.malloc or mm_realloc but not yet freed via mm_free) and the size
of the heap used by your allocator. The optimal ratio equals to 1. You should find good policies
to minimize fragmentation in order to make this ratio as close as possible to the optimal.

— Throughput: The average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing a performance index,
P, which is a weighted sum of the space utilization and throughput

T
P=wU+ (1 —w)min | 1,
Ttarget

where U is your space utilization, 1" is your throughput, and 7},,4¢; 1s the throughput of a reasonable
malloc implementation on CLEAR on the default traces.® The performance index favors throughput
over space utilization, with a default of w = 0.4.

Observing that both memory and CPU cycles are expensive system resources, we adopt this formula to
encourage balanced optimization of both memory utilization and throughput. Ideally, the performance
index will reach P = w 4 (1 — w) = 1 or 100%. Since each metric will contribute at most w and
1 — w to the performance index, respectively, you should not go to extremes to optimize either the
memory utilization or the throughput only. To receive a good score, you must achieve a balance
between utilization and throughput.

Note that your utilization score will remain the same on all CLEAR machines, but your throughput
score may vary with the load on the particular machine that you are using (we will use an otherwise
unloaded machine for grading).

The provided implementation already achieves a performance index of 29/100. Since your assign-
ment is to build a better memory allocator than we provided to you, your performance score will be
the performance index of your allocator minus 30.

3The value for Tiarget 1s a constant in the driver (54,500 Kops/s).



COMP 321: Introduction to Computer Systems Project 3: Malloc

Do not expect to receive all 70 performance points. While it is relatively easy to achieve high through-
put, it is much more difficult to achieve high utilization. Further, achieving higher utilization typically
means that you will lower your throughput. The best solution that we have would receive 69 points.
A less aggressive solution of ours would receive 56 points.

* Style (20 points). This includes general program style and the thoroughness of your heap consistency
checker checkheap.

* Writeup (10 points). The writeup should provide a high-level description of your dynamic memory
allocator’s design. Specifically, this description should answer the following questions: How does
your allocator keep track of free blocks? What placement policy does your allocator use? When does
your allocator split and coalesce free blocks? What is your allocator’s insertion policy for free blocks?
In addition, the writeup should describe your dynamic memory allocator’s heap consistency checker.



