COMP 321: Introduction to Computer Systems

Project 2: User-level Threads
Assigned: 2/12/25, Due: 2/27/25,11:55 PM

Overview

You will write a subset of the pt hreads library that is implemented using user-level threads.
The goals of this project are as follows:

* Understand threads and user-level context switching and scheduling.
* Become familiar with the concepts of I/O multiplexing and non-blocking 1/O.

* Use library interpositioning.

General Overview of Pthreads

A Unix process starts with a single kernel-level thread that runs the ma in function of the program. A kernel-
level thread is an execution context that is scheduled to run by the kernel. This initial kernel-level thread may
spawn additional kernel-level threads within the same process. All threads within the same process share
the process state (including memory, file descriptors, etc.). Each kernel-level thread, though, has its own
context (including the program counter, other register state, a stack, a signal mask, etc.). In contrast, user-
level threads implement their own thread scheduler that runs within a single kernel-level thread to provide
the capability to run multiple thread contexts within that kernel-level thread.

In this project you will implement a user-level threading library. This is similar to the underlying in-
frastructure that Go uses to implement goroutines and Java uses to implement virtual threads, for example.
Moreover, such modern user-level thread implementations also rely on I/O multiplexing and non-blocking
I/0.

Pthreads is the most commonly used threading library in C, which is also used to implement threads
in higher-level languages, such as Java. Pthreads is currently implemented using kernel-level threads,
but was originally implemented using user-level threads.

You will implement a user-level thread library, uthreads, that contains equivalent implementations
for the following functions from the pt hreads library:

* pthread._create
* pthread_detach
e pthread. self
* pthread exit
* pthread_join

* sched_yield

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

Pthreads applications that only use these functions (without options, as you will not implement the
pthreads options) should be able to use the normal pthreads library or your library interchangeably.

A multi-threaded program creates new threads using pthread_create. This function creates a new
thread and runs a specified function within that thread. As threads share the address space, the new thread
has access to exactly the same memory as the thread that spawned it, including global variables, the heap,
etc. So, if there are global variables, for example, they can be accessed by either thread. This is both good
(as it is convenient) and bad (as it can create data races if you write to those global variables).

A thread ends when the specified function returns or the thread calls pthread_exit.

A thread can either be “detached” or “joinable”. A newly created thread starts out in the “joinable” state.
This means that when it finishes, another thread must call pthread_join to clean up the resources of the
thread and receive the return value (if desired). When a thread calls pthread_join it will wait for the
thread it is trying to join with to complete (if it has not already done so).

A thread can be placed in the “detached” state by calling pthread_detach at any time. The resources
of a detached thread are cleaned up automatically when the thread ends and the return value is lost.

The pthread_self function returns a thread identifier that can be used to identify the currently run-
ning thread in other pthread calls.

The sched_yield function yields control back to the thread scheduler, allowing other threads to run
before the calling thread is run again.

Non-blocking Operations

Given that all uthreads within a process execute in the same kernel-level thread, if any thread “blocks”
in a system call, then the entire process becomes blocked. This means that until that thread unblocks, no
threads can execute, even if there are other threads that are ready to run.

Therefore, in uthreads, or any user-level thread library, it is important that all (or at least as many as
possible) operations be non-blocking. You will therefore need to provide non-blocking implementations of
the following common system calls that your threads can use:

e socket (2)
* accept (2)
e read(2)

e write (2)

Note that this does not mean that you will need to reimplement these functions! Rather, it means that
you will need to provide wrappers that call the underlying functions in a non-blocking way and correctly
handle the situations in which they would block (for example, by blocking the thread, switching to another
thread, and not rescheduling this thread until the operation can complete).

Thread Preemption

Again, given that all uthreads within a process execute in the same kernel-level thread, if a thread only
runs computations and never makes any blocking calls, then it could run within the process forever, pre-
venting any other threads from running. Therefore, there needs to be a way to “preempt” running threads.
This is typically done by allowing each thread to run for a maximum duration before it is preempted and
another thread is allowed to run. The setitimer (2) function can be used to set a recurring timer that

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

will deliver a STGPROF signal at the specified interval. The timer accounts for time spent both in user-space
and kernel-space, so it includes any time the thread spends in non-blocking system calls.

Whenever the STGPROF signal is received, the library should switch into the scheduler to enable it to
switch to running a different thread. However, if you switch threads at an “inopportune” time, it can be
problematic. Therefore, you must block STGPROF signals during any operations that modify shared state.
This includes the scheduler, which will modify queues of threads, and several standard library functions that
utilize shared state.

To help deal with this issue, we have provided protected implementations of the following standard
library functions that your thread can use:

* malloc (3)
e calloc (3)
e realloc (3)

e free(3)

These functions are only thread-safe (meaning multiple threads can call them without issue) when using
kernel-level threads. When they detect that there is only a single kernel-level thread within a process, they
assume that they will only ever be called from a single thread, so they perform optimizations that make them
not thread-safe. The provided wrappers ensure that they can only be called from a single user-level thread
at a time. Otherwise, they could exhibit undefined behavior.

Thread Scheduler

A key component of the uthreads library is the thread scheduler. The scheduler will need to manage
several thread queues. The scheduler will be responsible for making sure that it properly runs threads that
are not blocked, that it unblocks threads when the resource upon which they were blocked becomes ready,
and that zombie threads are reaped appropriately. The scheduler should do this in a fair way so that threads
do not starve each other. This means that the runnable threads should get roughly equal shares of the CPU
time. And when threads are blocked, no runnable thread should run twice before the scheduler checks if
blocked threads can become runnable.
Each thread can be in one, and only one, of the following states at any given time:

* FREE: this thread context is currently not being used.
— A FREE thread becomes RUNNABLE when it is allocated for use by pthread_create.

* RUNNABLE: this thread context is currently runnable, which means that it has not completed and it
has not been blocked.

— A RUNNABLE thread becomes BLOCKED when it tries to perform an I/O operation that would
block.

— A RUNNABLE thread becomes JOINING when it calls pthread_join and has to wait for the
other thread.

— A RUNNABLE thread becomes a ZOMBIE when it calls pthread_exit or returns.

* JOINING: this thread context is waiting to join with another thread context.

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

— A JOINING thread becomes RUNNABLE after the thread context it is waiting to join with com-
pletes.

* ZOMBIE: this thread context has completed, but has not yet been reaped.

— A detached ZOMBIE thread becomes FREE after it has been reaped.
— A joinable ZOMBIE thread becomes FREE after it has been joined.

* BLOCKED: this thread context is blocked waiting for I/O.
— A BLOCKED thread becomes RUNNABLE when the I/O upon which it is blocked is ready.

To manage the threads in these states, your scheduler should use the following four queues:

* The run queue should contain all of the threads in the RUNNABLE state in the order that they will be
scheduled.

The blocked queue should contain all of the threads in the BLOCKED state.
* The reap queue should contain all of the detached threads in the ZOMBIE state.

* The free queue should contain all of the threads in the FREE state.

Note that there is no need to hold the threads in the JOINING state in any queue, as they will be become
RUNNABLE when the thread upon which they are waiting to join exits. Similarly, there is no need to hold
the joinable threads in the ZOMBIE state in any queue, as the thread that joins with them will ultimately reap
them.

The scheduler is implemented by the internal function uthr_scheduler, and executed by a dedicated
ucontext_t, sched_uctx, thatis initialized to run with STGPROF signals blocked, so that the scheduler
will not itself be preempted. uthr_scheduler consists of an infinite loop that performs the following
actions on each iteration:

* If the run queue is not empty, the scheduler calls setitimer (2) to reset the preemption timer, sets
the global variable curr_uthr to the first thread in the run queue, and runs that thread by resuming
its ucontext_t. When the scheduler itself is resumed, after running this thread, it checks whether
the thread is still in the RUNNABLE state (which implies either the thread called sched_yield or
it was interrupted by SIGPROF; in either case it did not block on 1/O). If the thread is still in the
RUNNABLE state, the scheduler ...

— calls the internal function uthr_check blocked, passing false, to move any BLOCKED
threads that can now run to the tail of the run queue, and ...

— moves the previously running thread to the tail of the run queue after any threads that were just
unblocked.

* If the run queue is empty, the scheduler calls uthr_check_blocked, passing t rue, to wait for a
BLOCKED thread to become runnable.

* The scheduler frees all of the threads in the reap queue.
The following ut hreads library functions invoke the scheduler by resuming sched_uctx:

* pthread exit

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

* pthread_join, specifying a RUNNABLE thread as the first argument

* uthr_block_on_fd, which is an internal function of the library that blocks the calling thread until
the specified I/O operation can complete.

* uthr_timer_handler, which is an internal function of the library that handles STGPROF signals.

The internal functions uthr_block_on_fd and uthr_check_blocked collaborate on the imple-
mentation of blocking I/O operations through three shared data structures: the thread’s st ruct uthr, the
blocked queue, and fd_state. For example, when the application calls read, this call will be directed to
the uthread library’s wrapper for read. This wrapper will itself call the standard library’s read function.
If that function returns —1 and sets errno to EAGAIN, then the wrapper will call uthr block_on_fd.
uthr_block_on_fd will update calling thread’s st ruct uthr to reflect the file descriptor and opera-
tion (read or write) on which the thread is blocking. Then, uthr block_on_fd will move the thread to
the blocked queue, updating its state accordingly. Finally, uthr block_on_fd will update £d_state to
reflect that a thread is now blocked reading or writing on the specified file descriptor. For example, sup-
pose that the thread was attempting to read from file descriptor £d. If the £d_state’s readers count for
fdis 0, then uthr block_on_fd will perform FD_SET (fd, &fd_state.read_set). Then, it will
unconditionally increment £d’s readers count.

When the scheduler calls uthr_check _blocked, it passes a Boolean that indicates whether or not
uthr_check_blocked should wait for a thread to become runnable. As described above, if there are
already runnable threads, then the scheduler will direct uthr_check_blocked to not wait. In either case,
uthr_check_blocked will perform a select on a copy of the read and write £d_sets maintained
within fd_state. Then, uthr_check blocked will iterate over the threads in the blocked queue,
checking to see if the fd_sets returned by select indicate that any of the I/O operations that blocked
threads are waiting on can complete. For example, suppose that the returned £d_set for reads indicates that
a thread that was waiting to read from file descriptor £d can be unblocked. Then, uthr_check blocked
will decrement £d_state’s readers count for £d, and if the updated count is 0, perform FD_CLR (£d,
&fd_state.read_set). Finally, uthr_check_blocked will move the thread to the run queue.

The internal function uthr_init initializes the shared state of the scheduler, such as the various
queues, and the thread structure that represents the initial thread that is already running, in fact, execut-
ing uthr_init itself and eventually main. It also sets up the handler for STG_PROF signals and starts the
preemption timer. uthr_init is defined as a constructor so that it will execute before the main function
of the application program.

Library Interpositioning

The uthread library relies on library interpositioning to intercept calls to various standard library func-
tions from the application, and itself make calls to those standard library functions. Library interpositioning
was discussed in the lectures on Linking in COMP 222 and is described in Chapter 7 of the Textbook.

To support the implementation of the non-blocking I/O functions, the internal function
uthr_lookup_symbol should use the functions d1sym and dlerror to look up and return the speci-
fied symbol’s address. See the manual page for d1open on CLEARSY for a description of how to correctly
use these functions.

Note that unlike the uthreads wrappers for functions like malloc and read, which are permitted
to call their counterparts in the standard C library, the implementations of the pthreads functions, in-
cluding sched_yield, within the uthreads library may not call their counterparts. More generally, no
function within the uthreads library may call any pthreads functions from the standard C library (or

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

any other library). Only applications should call pt hreads functions, which will then call your uthread
implementations of those functions (either by directly linking with uthreads or by using library interpo-
sitioning).

The “Checking Your Work™ section below provides examples of how to use interpositioning in order to
use your uthreads library in place of the pthreads library.

Getting Started

Please visit the web page at https://classroom.github.com/a/5L0crBb9. (If you are copying
this URL, do not include the period at the end of the sentence, as it is not part of the URL.) This page should
say “RICE-COMP321-S25-Classroom” and “Accept the assignment — Threads”. Moreover, it should have
a green button labeled “Accept this assignment”!. Please accept the assignment.

Upon accepting the assignment, you will be redirected to another web page. This page will confirm that
you have accepted the assignment, and it will eventually (after you click refresh) provide you with a link to
your personal repository for the assignment. Click this link to go to your personal repository.

The web page for your personal repository has a green button labeled “Code”. Click this button. You
should now see a text field with a URL. Copy or remember this URL.

Login to the CLEAR9 system if you have not already done so. Type the following:

git clone [Copy the URL for your repo here]

You will be prompted for your github username and password.
Once the clone operation is complete, you will have a directory named

threads-[YOUR github ID]

Please cd into this directory, and do the following:
* Type a header comment at the top of uthread. c with your name and NetID.

* Type the command make to compile and link a skeleton thread library and some simple programs
you can run to test it.

The provided code includes the following source files for the uthreads library:
1. uthread.c

2. uthread_internal.h
3. unix.c

4. stdlib.c

The uthread. c file is the heart of the uthreads library. It implements the pthreads functions,
the thread scheduler, and uthr_lookup_symbol for implementing library interpositioning. You will need
to complete this file to create a functioning ut hreads library.

The uthread_internal.h file declares the utility functions of the uthreads library that are de-
fined within uthread. c and can be called by functions in unix.c or stdlib.c. These functions are
for internal use by the uthreads library and will not be called by the applications. You should not modify
this file.

The unix.c and stdlib.c files contain the wrappers for the Unix system-level I/O and standard
C library functions, respectively. You will only need to modify unix.c to complete these wrappers, not
stdlib. c. These wrappers can call functions declared in uthread_internal.h.

"You may have to login to GitHub to see this page. If so, you will be prompted for your GitHub username and password.

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

Checking Your Work

We have provided some test programs to help you check your work (all of which will be built when running
make):

* test_uthread: a simple test program that tests the edge cases of your pthread create,
pthread_detach, pthread_exit, and pthread_join functions.

* spin: a simple program that creates the number of threads specified on the command line (or 5 if
nothing is specified) that each spin in a loop calling malloc (3) and then free (3), printing the
thread id every 5000 times through the loop. The point of the spin program is to allow you to test
preemption. You should see the threads preempt each other as it runs.

* tiny: a multithreaded implementation of the tiny web server from the text book. The point of the
web server is to test blocking I/O.

The rio.c and rio.h files are solely for the use of these test programs (specifically the tiny web
server). No rio functions should be called from your ut hreads library.

To run the test program, run . /test_uthread after running make. This will run a sequence of tests
and print messages to tell you whether your implementation passes or fails each test. You should get these
tests working before trying the other test programs.

To run the spin program, you can run ./spin_pthreador ./spin_uthread. As the name sug-
gests, the former runs the spin program using the system’s pthreads library, while the latter runs the spin
program using your uthreads library. As you run the two versions of the spin program, you will immedi-
ately see the difference between using kernel threads and user-level threads. Do not expect the output from
the two programs to match! Rather, you should be able to successfully run the program using your library
without crashing or locking up and never finishing. You should also be able to make spin_pthread use
your uthreads library, if you have implemented the pthreads API correctly. In order to do so, you
should run it as follows:

UNIX% env LD_PRELOAD=./libuthread.so ./spin_pthread

This should behave similarly to spin_uthread and demonstrates the use of library interpositioning
to allow your library to be used instead of the default pthreads library (compare the output to running
spin_pthread without the LD_PRELOAD).

Finally, to run the tiny web server, you can run ./tiny [-v] <port>, where <port> must be
a number between 18000 and 18200 and —v turns on “verbose” mode, which you may find helpful in
debugging your thread library. However, the web server needs files to serve. You can make it serve the
COMP 222 website by doing the following:

UNIX% cd “comp222/public_html
UNIX% ~/comp32l/assignments/threads/tiny -v <port>

This assumes your assignment is stored in:
~/comp321l/assignments/threads/

If it is not, you should adjust the second command accordingly. This will start the tiny web server in
the course web page directory, so it will serve the pages of the COMP 222 web page. You can browse those
pages by going to http://<machine>.clear9.rice.edu:<port>/html/, where <machine>

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

is replaced with the name of the machine you ran the tiny web server on above and <port> is replaced
with the port number you selected when you ran it.

You can also use the ab program to concurrently access the server with an arbitrary number of connec-
tions. To do so, after starting the tiny web server in the COMP 222 web page directory, you should run the
following command from a separate terminal window:

UNIX% ab -c 16 -n 1000 http://<machine>.clear9.rice.edu:<port>/html/pptx/l12-memhier.pptx

This will retrieve the specified file 1000 times using 16 concurrent connections. You can change these
parameters if you like, but keep in mind that your uthreads library supports a maximum of 64 threads,
so you won’t be able to serve more than 64 connections at a time.

The output should look something like the following. In particular, observe the difference between the
two “Time per request” lines. This shows that there is concurrency between the requests, as each request
takes roughly 17ms to complete, but 16 of them operate concurrently, so when you average the time per
request, it only appears to take 1ms per request.

This is ApacheBench, Version 2.3 <$Revision: 1913912 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking pyrite.clear9.rice.edu (be patient)
Completed 100 requests
Completed 200 requests
Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Completed 1000 requests
Finished 1000 requests

Server Software: Tiny
Server Hostname:
Server Port:

pyrite.clear9.rice.edu
18111

Document Path:
Document Length:

/html/pptx/12-memhier.pptx
1264162 bytes

Concurrency Level: 16

Time taken for tests: 1.103 seconds
Complete requests: 1000

Failed requests: 0

Total transferred:
HTML transferred:
Requests per second:

1264257000 bytes
1264162000 bytes
906.37 [#/sec] (mean)

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

Time per request: 17.653 [ms] (mean)
Time per request: 1.103 [ms] (mean, across all concurrent requests)
Transfer rate: 1119029.15 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max
Connect: 0 0 0.2 0 3
Processing: 3 17 10.6 20 57
Waiting: 0 1 1.4 1 13
Total: 3 18 10.6 21 57

Percentage of the requests served within a certain time (ms)
50% 21

66% 23

75% 25

80% 26

90% 29

95% 37

98% 42

99% 43
100% 57 (longest request)

Notes

* The definition of pthread_create includes an argument at t r of type pthread_attr_t, which
is used to override the default attributes of a thread, such as its stack size. However, the uthread
library does not support this feature. If the attr passed to pthread_create is not NULL, then
pthread_create fails, returning ENOTSUP.

* pthread_create can also fail, returning EAGAIN, if it is unable to allocate either a struct
uthr from the free queue or the memory for the thread’s stack from uthr_intern_malloc. The
size of every ut hread’s stack is 2MB.

* Given the relatively large size of a uthread’s stack, only active threads possess stacks. In other
words, a uthread’s stack is allocated when it first becomes runnable and deallocated when it tran-
sitions from the ZOMBIE state to the FREE state.

* pthread._detach and pthread_join fail, returning ESRCH, if the specified thread is free.

* pthread._detach and pthread_join fail, returning EINVAL, if the specified thread is already
detached. pthread_join also fails, returning EINVAL, if the specified thread already has another
thread joining with it.

* pthread_join fails, returning EDEADLK, if the specified thread is the calling thread or the specified
thread has previously called pthread_join, specifying the calling thread. In other words, the
calling thread is attempting to join itself or two threads are attempting to join each other.

* pthread_exit cannot free the calling thread’s stack because it is running on that stack. An exiting
thread’s stack can only be freed after the ut hread library has resumed a different ucontext_t,
such as the scheduler or that of a joining thread.

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

* sched_yield should always return 0. Its implementation within the uthreads library should
never fail and return —1.

* The various queues must be implemented as circular doubly-linked lists as described in COMP 222,
so that adding and removing threads are O(1) operations.

* Thecallto sigactionbyuthr_init to setup the STGPROF handler must specify SA_RESTART.

* Even when SA_RESTART is specified to sigaction, select behaves differently from most sys-
tem calls. It will not automatically restart after a signal is received. Instead, it will return without
completing what it was requested to do. Consequently, uthr_check_blocked must be prepared
for select to return —1 and set errno to EAGAIN. As the errno value suggests, the call to
select should simply be retried.

* Just as you did within functions that manipulated or accessed the jobs array in the Shell assignment
(such as add_job) you need to block the appropriate signals when working with shared state in the
uthreads library.

* Any calls to the functions getcontext, makecontext, setcontext, and swapcontext
within the uthreads library must be performed with STGPROF signals blocked, with the excep-
tion of calls within uthr_init. For example, if a call to swapcontext were preempted, and
another call to swapcontext with the same ucontext _t as the first argument were to occur, the
results could be catastrophic.

Writeup

Your uthreads library implements “preemptive multithreading”, as the scheduler runs on a timer and can
prempt running threads. Alternatively, running threads are never preempted in “cooperative multithread-
ing”. Instead, the scheduler would only run when a thread blocks (on I/O, for example), yields (by calling
sched_yield, for example), or completes.

In your writeup (in writeup.txt), reflect upon how your ut hreads implementation would change
if you were to implement “cooperative multithreading” instead of “preemptive multithreading”. Be specific
about what would be different in the implementation.

Turning in Your Assignment

To turn in your code and writeup, you must use git push to copy your work to the github remote
repository. We will only look at the last version that you pushed before the deadline. As a precaution
against accidental loss of your code, we encourage you to push periodically. Please note, the only files that
you need to turn in are unix.c, uthread.c, and writeup.txt. You should not modify or add any
other files in your repository. In other words, these are the only three files on which you should ever perform
git add. Do not ignore this instruction.

For grading your submission, we will use the Makefile that was originally provided to compile your
code. Therefore, your code should not rely on any modifications to the Make fi1le for correct compilation
(and you shouldn’t be modifying that file anyway, as discussed in the previous paragraph).

As a sanity check, you should use your web browser to visit your assignment repo. Make sure that what
you see in the browser is consistent what you think you have pushed.

10

COMP 321: Introduction to Computer Systems Project 2: User-level Threads

Evaluation
The project will be graded as follows:

» Style: 15%
e Writeup: 5%
e Correctness: 80%

Your solution will be tested for correctness on a CLEAR9 machine.

11

