OS Kernel and
User Process Relationship

COMP 321

Dave Johnson

COMP 321 Copyright © 2025 David B. Johnson Page 1

User Processes

A process is a program in execution
* A program is a file on disk, the output of the compiler and linker
* A process is some program running in an address space
— Address spaces are protected/isolated from each other
— Program runs without interference from other address spaces
* Each process has its own hardware CPU register values (e.g., PC and SP)

—The operating system switches the CPU back and forth from running one
process to running another (called “context switches”)

—The OS thus shares the CPU among processes needing to execute
— Operating system saves/restores hardware CPU register values in kernel
memory when context switching from one process to another

COMP 321 Copyright © 2025 David B. Johnson Page 2




A Process Address Space . grows down
stack
d=4
A simplified example -
; . Ensure stack and heap
t « ”
nta; can’t overlap red zone
intb=2; A
main() Allocated with malloc heap grows up
{ Uninitialized global/static | 2 “bss”
int c;
intd=4; Initialized global/static | b=2 data
}
CPU instructions main text
COMP 321 Copyright © 2025 David B. Johnson Page 3
What is the Operating System?
An operating system is not an application program
* It does basically nothing by itself
* It is more like a procedure/subroutine/function library
— But it is called by programs and by the hardware
OS acts as an intermediary between users and the hardware
Application
User ) 7PP Hardware
program

* Programs/users can’t talk directly to the hardware (definition of a “real” 0S?)

COMP 321

Copyright © 2025 David B. Johnson

Page 4




No Single Accepted Definition of an OS

An operating system provides an environment in which to run programs
* Programming on bare hardware is hard

* Many ugly, low-level details to control and get right

* OS can handle most of this for us

* Makes hardware convenient and easy to use

An operating system provides services, such as

* Output some text on the screen, read a line from the keyboard
* Allocate some memory, or store a file on the disk

* Run one program from another program

* Share the CPU with multiple programs running “concurrently”

COMP 321 Copyright © 2025 David B. Johnson Page 5

Operating System Goals

Make efficient use of available resources
* CPU, memory, disk, network, ...

* And the users/programmers, too

* Need to balance all of these “resources”

* Originally, the hardware was the most expensive resource
—Manage hardware resources even at expense of ease of use
— Particularly for the CPU, the most expensive resource

* Now people often are the most expensive
—Now consuming more hardware resources for ease of use
— Example: Graphical user interfaces

COMP 321 Copyright © 2025 David B. Johnson Page 6




Is the OS Everything You Got from the Vendor?

* You buy a new computer, or you download and install Linux, etc.
- You got a whole bunch of software with that new computer
— But is that software all really “the operating system”?

Examples

* The C compiler?

* Unix troff/nroff, Windows Notepad/WordPad, Apple Pages?

* Window manager (X-Windows, Microsoft Windows GUI, etc.)?
* Web browser?

III

* Just the “essential” software (hard to define)?

COMP 321 Copyright © 2025 David B. Johnson Page 7

A More Narrow and Concrete View?

Everything that runs in CPU hardware “kernel” mode
* The “operating system kernel”
¢ CPU hardware knows it is either in “user mode” or in “kernel mode”

* Hardware enforces that certain things can only be done when the CPU is
executing in kernel mode (e.g., “privileged instructions”)

* The hardware enforces that there are only certain very well controlled ways to

get CPU into and out of kernel mode

(Very) rough analogies in software to hardware kernel mode
* The “root” user on a Unix/Linux system
* A Windows account with Administrator privilege

COMP 321 Copyright © 2025 David B. Johnson Page 8




The Meaning of “Kernel”

Definitions from dictionary.com

1. the softer, usually edible part contained in the shell of a nut or the stone
of a fruit.

the body of a seed within its husk or integuments.
a whole seed grain, as of wheat or corn.

South Atlantic States. the pit or seed of a peach, cherry, plum, etc.

oA W

the central or most important part of anything; essence; gist; core:
His leadership is the kernel of the organization.

COMP 321 Copyright © 2025 David B. Johnson Page 9

Only Three Ways to Enter Kernel Mode

Interrupt: An asynchronous signal from a device outside the CPU

* Examples: someone typed a key on the keyboard, a disk hardware 1/0 request
has completed, or packet arrived over the network

Exception: An error executing a specific CPU instruction
* Privileged instruction, memory protection, divide by zero, etc.
* The error depends on the instruction operands or circumstances

Trap: A special CPU instruction used to call kernel services (e.g., x86-64 syscall)
* Often referred to as a kernel call or system call

* Write to a file on disk, create a new process, allocate more memory, etc.

* Unlike an exception, this instruction always causes a trap

COMP 321 Copyright © 2025 David B. Johnson Page 10

10




Only Three Ways to Enter Kernel Mode

Application exceptions oS interrupts

program traps 'W‘

OS acts as an intermediary between users and the hardware

Hardware

A
A

* The OS gets itself into this position and must be able to maintain it

* Programs/users can’t talk directly to the hardware

COMP 321 Copyright © 2025 David B. Johnson Page 11

11

Interrupt, Exception, or Trap Handling

All three are handled by the hardware similarly
* All push current PC and other CPU state (including mode bit) onto the stack
* All force the CPU into kernel mode (setting CPU mode bit to kernel mode)

* All branch to a predetermined code address for that type of interrupt,
exception, or trap inside the kernel

* The operating system kernel executes code to handle it

* On return, all restore the pushed CPU state, restoring CPU to its prior mode
(user mode or kernel mode) and returning to the saved PC code address

* Similar to a “regular” procedure call, except very special extra CPU hardware
actions on call and then on return

COMP 321 Copyright © 2025 David B. Johnson Page 12

12




COMP 321 vs. COMP 421

User programs making typical “kernel calls”:

b Operating System Kernel

: (in kernel mode)

= /\/\//\" W
@) A A

o

i

N

%))

a. see

= User Process V¥ User Process V¥
8 (in user mode) (in user mode)

COMP 321 Copyright © 2025 David B. Johnson Page 13

13

The Kernel is “Event Driven”

The kernel executes only when called
* Interrupts

* Exceptions

* Traps

Like a procedure library, but a very different way of calling and return

While inside the kernel and before returning

* Kernel can decide to context switch to a new process and return as that process

* Or can simply return as the same process as when the kernel was entered

* Kernel generally context switches frequently enough so each process sees the
abstraction that it is running continuously

COMP 321 Copyright © 2025 David B. Johnson Page 14

14




The Clock Interrupt

An external hardware device that simply generates periodic interrupts
* Generally, the clock hardware configurable by the kernel
— Clock hardware counts down from some value initialized by the kernel
—When it hits O, it causes an interrupt and resets to same initial value
* For example, a clock interrupt rate of 100 per second (every 10 milliseconds)
* Gives the kernel (at least) these frequent opportunities for a context switch

Many other uses for these interrupts, such as

* Keep track of the time of day

* Count down delays before some action (e.g., retransmit a network packet)
* Per process CPU time usage accounting

COMP 321 Copyright © 2025 David B. Johnson Page 15

15

Making a Kernel Call from a C Program

How can you execute a kernel call from a program written in C
* Requires a specific CPU instruction (e.g., x86-64 syscall) to cause a trap
* And a trap is needed to get CPU into kernel mode to execute the kernel call

* And generally, how can we make doing a kernel call “convenient” (don’t want
to mess with special instructions or have to deal with specific CPU registers)

Solution: a “stub” procedure in standard C library for each type of kernel call
* Stub is written in assembly language, conforming to C calling conventions

* Packages the kernel call arguments (if necessary for this CPU architecture)

* Executes the TRAP (e.g., syscall) CPU instruction

* Returns result of the call in register(s), conforming to C calling conventions

COMP 321 Copyright © 2025 David B. Johnson Page 16

16




