
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

OS Kernel and
User Process Relationship

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

User Processes
A process is a program in execution
• A program is a file on disk, the output of the compiler and linker
• A process is some program running in an address space

‒ Address spaces are protected/isolated from each other
‒ Program runs without interference from other address spaces

• Each process has its own hardware CPU register values (e.g., PC and SP)
‒ The operating system switches the CPU back and forth from running one

process to running another (called “context switches”)
‒ The OS thus shares the CPU among processes needing to execute
‒ Operating system saves/restores hardware CPU register values in kernel

memory when context switching from one process to another

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

A simplified example

int a;
int b = 2;

main()
{

int c;
int d = 4;

}

A Process Address Space
stack

“red zone”

heap

“bss”

data

text

c
d = 4

a

b = 2

CPU instructions

Initialized global/static

Uninitialized global/static

Allocated with malloc

Ensure stack and heap
can’t overlap

grows down

grows up

main

0

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

What is the Operating System?
An operating system is not an application program
• It does basically nothing by itself
• It is more like a procedure/subroutine/function library

‒ But it is called by programs and by the hardware

OS acts as an intermediary between users and the hardware

• Programs/users can’t talk directly to the hardware (definition of a “real” OS?)

OS Hardware
Application

programUser

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

No Single Accepted Definition of an OS
An operating system provides an environment in which to run programs
• Programming on bare hardware is hard
• Many ugly, low-level details to control and get right
• OS can handle most of this for us
• Makes hardware convenient and easy to use

An operating system provides services, such as
• Output some text on the screen, read a line from the keyboard
• Allocate some memory, or store a file on the disk
• Run one program from another program
• Share the CPU with multiple programs running “concurrently”

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Operating System Goals
Make efficient use of available resources
• CPU, memory, disk, network, …
• And the users/programmers, too
• Need to balance all of these “resources”

• Originally, the hardware was the most expensive resource
‒ Manage hardware resources even at expense of ease of use
‒ Particularly for the CPU, the most expensive resource

• Now people often are the most expensive
‒ Now consuming more hardware resources for ease of use
‒ Example: Graphical user interfaces

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Is the OS Everything You Got from the Vendor?
• You buy a new computer, or you download and install Linux, etc.

‒ You got a whole bunch of software with that new computer
‒ But is that software all really “the operating system”?

Examples
• The C compiler?
• Unix troff/nroff, Windows Notepad/WordPad, Apple Pages?
• Window manager (X-Windows, Microsoft Windows GUI, etc.)?
• Web browser?
• Just the “essential” software (hard to define)?

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

A More Narrow and Concrete View?
Everything that runs in CPU hardware “kernel” mode
• The “operating system kernel”
• CPU hardware knows it is either in “user mode” or in “kernel mode”
• Hardware enforces that certain things can only be done when the CPU is

executing in kernel mode (e.g., “privileged instructions”)
• The hardware enforces that there are only certain very well controlled ways to

get CPU into and out of kernel mode

(Very) rough analogies in software to hardware kernel mode
• The “root” user on a Unix/Linux system
• A Windows account with Administrator privilege

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

The Meaning of “Kernel”
Definitions from dictionary.com

1. the softer, usually edible part contained in the shell of a nut or the stone
of a fruit.

2. the body of a seed within its husk or integuments.

3. a whole seed grain, as of wheat or corn.

4. South Atlantic States. the pit or seed of a peach, cherry, plum, etc.

5. the central or most important part of anything; essence; gist; core:
His leadership is the kernel of the organization.

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Only Three Ways to Enter Kernel Mode
Interrupt: An asynchronous signal from a device outside the CPU
• Examples: someone typed a key on the keyboard, a disk hardware I/O request

has completed, or packet arrived over the network

Exception: An error executing a specific CPU instruction
• Privileged instruction, memory protection, divide by zero, etc.
• The error depends on the instruction operands or circumstances

Trap: A special CPU instruction used to call kernel services (e.g., x86-64 syscall)
• Often referred to as a kernel call or system call
• Write to a file on disk, create a new process, allocate more memory, etc.
• Unlike an exception, this instruction always causes a trap

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Only Three Ways to Enter Kernel Mode

OS acts as an intermediary between users and the hardware

• The OS gets itself into this position and must be able to maintain it

• Programs/users can’t talk directly to the hardware

OS
kernel Hardware

Application
program

exceptions

traps

interrupts

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Interrupt, Exception, or Trap Handling
All three are handled by the hardware similarly

• All push current PC and other CPU state (including mode bit) onto the stack

• All force the CPU into kernel mode (setting CPU mode bit to kernel mode)

• All branch to a predetermined code address for that type of interrupt,
exception, or trap inside the kernel

• The operating system kernel executes code to handle it

• On return, all restore the pushed CPU state, restoring CPU to its prior mode
(user mode or kernel mode) and returning to the saved PC code address

• Similar to a “regular” procedure call, except very special extra CPU hardware
actions on call and then on return

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

COMP 321 vs. COMP 421

...

CO
M

P
42

1 Operating System Kernel
(in kernel mode)

CO
M

P
32

1

User Process
(in user mode)

User Process
(in user mode)

User programs making typical “kernel calls”:

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

The Kernel is “Event Driven”
The kernel executes only when called
• Interrupts
• Exceptions
• Traps

Like a procedure library, but a very different way of calling and return

While inside the kernel and before returning
• Kernel can decide to context switch to a new process and return as that process
• Or can simply return as the same process as when the kernel was entered
• Kernel generally context switches frequently enough so each process sees the

abstraction that it is running continuously

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

The Clock Interrupt
An external hardware device that simply generates periodic interrupts
• Generally, the clock hardware configurable by the kernel

‒ Clock hardware counts down from some value initialized by the kernel
‒ When it hits 0, it causes an interrupt and resets to same initial value

• For example, a clock interrupt rate of 100 per second (every 10 milliseconds)
• Gives the kernel (at least) these frequent opportunities for a context switch

Many other uses for these interrupts, such as
• Keep track of the time of day
• Count down delays before some action (e.g., retransmit a network packet)
• Per process CPU time usage accounting

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Making a Kernel Call from a C Program
How can you execute a kernel call from a program written in C
• Requires a specific CPU instruction (e.g., x86-64 syscall) to cause a trap
• And a trap is needed to get CPU into kernel mode to execute the kernel call
• And generally, how can we make doing a kernel call “convenient” (don’t want

to mess with special instructions or have to deal with specific CPU registers)

Solution: a “stub” procedure in standard C library for each type of kernel call
• Stub is written in assembly language, conforming to C calling conventions
• Packages the kernel call arguments (if necessary for this CPU architecture)
• Executes the TRAP (e.g., syscall) CPU instruction
• Returns result of the call in register(s), conforming to C calling conventions

15

16

