
1

Copyright © 2026 David B. JohnsonCOMP 321 Page 1

Programs and Processes

COMP 321

Dave Johnson

Copyright © 2026 David B. JohnsonCOMP 321 Page 2

The State of a Running Process
User-visible state
• The process’s address space (it’s memory)
• Current CPU register values:   PC, SP, R0, R1, R2, R3, R4, R5, R6, R7, R8, …

‒ (Intel CPUs: rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8, r9, r10, r11, …, r15)

State inside the kernel (traditionally, the Process Control Block, or PCB)
• One per process, collects together all OS state for that single process

‒ The process’s process ID
‒ Saved CPU register values (when not currently running on the CPU)
‒ Table of the process’s open file descriptors
‒ Lots of other bookkeeping info about the process

1

2



2

Copyright © 2026 David B. JohnsonCOMP 321 Page 3

Processes and Threads
Classically, a process has a single thread of execution
• One point of execution progress, one set of register values
• Example:

main( … )
{

…
return 0

}

But a process may be “multithreaded”
• Multiple “threads” sharing the same address space
• All running concurrently, all “at once,” cooperating
• Threads are also called lightweight processes

Copyright © 2026 David B. JohnsonCOMP 321 Page 4

Why Multiple Threads Sharing an Address Space?
Easy cooperation between these threads since they share all data, such as

• A windowing GUI system
‒ All threads share the same data structures of what’s on the screen
‒ One thread tracking the mouse on the screen
‒ One thread for each open window

• Microsoft Word
‒ On thread managing the user’s keyboard
‒ One thread doing line breaks, one doing paragraph breaks, one page breaks
‒ One thread doing spell checking, one for grammar checking, etc.

For now, we will limit ourselves to a single thread of control: A “classical” process

3

4



3

Copyright © 2026 David B. JohnsonCOMP 321 Page 5

The main() Procedure of Any Program
Every program has a main() procedure, with these arguments

Suppose the program was run as
./myprog Hello world

• argc = 3

• argv[0] = “./myprog”
argv[1] = “Hello”
argv[2] = “world”
argv[3] = NULL

int main(int argc,  char *argv[])

By convention, argv[0] 
always equal to the name 
the program was run as

And argv[argc] will be NULL

Copyright © 2026 David B. JohnsonCOMP 321 Page 6

Example main()
#include <stdio.h>

int main(int argc,  char *argv[])
{

printf("program executed as %s, argc = %d\n", argv[0], argc);
for (int i = 1; i < argc; i++)

printf("arg % d = %s\n", i, argv[i]);
return 0;

}

$ cc -o foo foo.c

$ ./foo aaa bb ccccc

program executed as ./foo, argc = 4
arg 1 = aaa
arg 2 = bb
arg 3 = cccc

output

5

6



4

Copyright © 2026 David B. JohnsonCOMP 321 Page 7

But main() is Really Just a Regular Procedure
The name “main” is special (expected), but it works like any other procedure
• It gets called called like a normal procedure (because it is a normal procedure)
• It returns like a normal procedure (because it is a normal procedure)

Some mysteries
• Who actually does the procedure call to main(), passing it those arguments 

(argc and argv) with the right values?
• When main() executes any “return” statement, where does that return go 

back to?
• And what happens if the execution of main() just “falls of the bottom” of that 

procedure (with no explicit “return” statement or “return” value)?

Copyright © 2026 David B. JohnsonCOMP 321 Page 8

Terminating a Process: Returning from main()

Doing “return value” from main(), with some explicit return value
• Then “value” is the return value from that function

Falling off the bottom of a function is the same as “return” from that function
• Whatever value happens to be in some specific CPU register (e.g., %rax on 

x86_64) becomes the function’s return value
• (So there always is some return value from any function)

The “exit status” of the process
• The least significant byte of the main() return value (i.e., value & 0xff)

return value; /* from inside main() */
return; /* from inside main(), or “falling off the bottom” of main() */

7

8



5

Copyright © 2026 David B. JohnsonCOMP 321 Page 9

Terminating a Process: Calling exit() vs. _exit()

_exit(status) is a kernel call
• Just causes the process to immediately terminate

exit(status) is a library call
• Executes various, e.g., “cleanup”-type functions, including flushing and closing 

all open stdio streams
• And finally calls the kernel call  _exit(status)

The “exit status” of the process
• The least significant byte of status (i.e., status & 0xff)

[[noreturn]]  void _exit(int status);
[[noreturn]]  void  exit(int status);

Copyright © 2026 David B. JohnsonCOMP 321 Page 10

The C Runtime “Wrapper” Code for main()
A small piece of assembly language code (traditionally called crt0)

• The real entry point for any program (the first code to execute)

• The kernel arranges to initialize the PC register when this program first begins 
execution to be equal to the address of this C runtime code

• Different systems are a bit different, but in general this code does
‒ Packages command line arguments in argv[ ] format
‒ Calls status = main(argc, argv);
‒ Calls exit(status);   /* library exit(), which ultimately calls kernel _exit() */

• This is how the return value from main() turns into the exit status for the 
process

9

10



6

Copyright © 2026 David B. JohnsonCOMP 321 Page 11

What Should the Exit Status of a Process Be?
Any 8-bit value you want to exit with
• But there is a very old, long-standing convention

‒ exit 0 for successful completion
‒ exit any nonzero value (e.g., 1) for any error/failure completion

• Example: Using the bash shell
$ true
$ echo $?
0

$ false
$ echo $?
1

$ if true; then echo yes; else echo no; fi
yes

$ if false; then echo yes; else echo no; fi
no

• Recommendation: #include <stdlib.h>
• Use  exit(EXIT_SUCCESS);  or  exit(EXIT_FAILURE);

Copyright © 2026 David B. JohnsonCOMP 321 Page 12

The Termination of a Process
Regardless of how a process terminates
• The kernel frees the process’s entire address space (all its memory)
• Closes all of the process’s open files
• Frees all other resources held by the process, except …

The process becomes a “zombie” process
• Meaning that the kernel retains just enough of the process’s state to be able 

to report the process’s termination to the process’s parent process
• The process in this “zombie” state remains until it is “reaped” (i.e., collected) 

by the parent process
• Once reaped, the child is then completely gone (and thus not reported again)

11

12



7

Copyright © 2026 David B. JohnsonCOMP 321 Page 13

How the Shell Runs a Program
Consider the shell running a program such as ./myprog

• The program myprog has to get loaded into memory and executed

• The shell must still be there, ready for the next command

‒ Can’t just throw away the shell’s process state and address space

‒ And can’t allow myprog to possibly mess up the shell

• Means myprog must run as a separate process, with its own address space

• Normally, the shell waits for myprog process to finish

• But if the command includes “&” (as in, e.g., “./myprog &”), the shell process 
and the new myprog process actively run concurrently

Copyright © 2026 David B. JohnsonCOMP 321 Page 14

How the Shell Runs a Program

The shell uses the fork() kernel call
to create a new process as an
exact clone of itself

The shell (still exists) waits for the
new child process to finish

The new child process replaces in
memory the program it is running (the
shell) with the new program (myprog)

myprog runs and eventually exits

The shell process New child process

The shell reaps child’s exit status

13

14



8

Copyright © 2026 David B. JohnsonCOMP 321 Page 15

#include <unistd.h>
#include <sys/wait.h>

int main()
{

pid_t pid = fork();

if (pid == 0) {
execl(“./myprog", "myprog", NULL);

} else {
wait(NULL);

}

return 0;
}

A Simple Example of the Shell Running “./myprog”

This simple example does not 
do any error checking, but 

you should!

The only difference: 
fork() returns 0 in the 
child and nonzero in 

the parent

fork() returns twice:
once in the parent and

once in the child

Copyright © 2026 David B. JohnsonCOMP 321 Page 16

Creating a New Process

Creates a new process as an identical “clone” of the calling process
• Kernel creates a new PCB for the new process, substantially as a copy of the 

calling process’s existing PCB
• Kernel assigns new process a new pid, remembered in the kernel in child’s PCB

‒ pids assigned in ascending order, wrapping around, skipping those in use
• Child address space is created as a copy of the calling process’s address space

‒ Child thus appears to have called fork(), since the parent did call fork()
‒ So fork() returns twice

oOnce (as normal) in the parent: returns the new child’s pid
oAnd once (appearing to be normal) in the child process: returns 0

pid_t fork(void);

15

16



9

Copyright © 2026 David B. JohnsonCOMP 321 Page 17

Running a New Program in the Current Process

Replaces entire calling address space with program specified by pathname
• Many variants of “exec”: execve() is a kernel call, others are library calls
• argv (or args …) is a vector of the individual char * command line arguments

‒ argv[0] should be the program name
• On success, does not return to caller – begins at entry point of new program

(i.e., the “wrapper” code that calls its main() and then exits)

int execve(const char *pathname,  char *const _Nullable argv[],
char *const _Nullable envp[]);

int execl(const char *pathname,  const char *arg, ...
/*, (char *) NULL */);

int  execv(const char *pathname,  char *const argv[]);

Copyright © 2026 David B. JohnsonCOMP 321 Page 18

Waiting for a Child Process to Finish

wait() waits for any child to exit, waitpid() can wait for a specific child
• The parent “reaps” (i.e., collects) the exit status (and pid) of its child
• Calling wait() is equivalent to calling waitpid() with pid = -1, options = 0

‒ can also give other reasons you want child status report (not relevant here)
• Both wait() and waitpid() return the pid of the child
• If wstatus != NULL, points to int into which to store the exit status of that child
• Returns -1 if no remaining children (none still running and none unreported), 

with errno = ECHILD

pid_t wait(int *_Nullable wstatus);
pid_t waitpid(pid_t pid,  int *_Nullable wstatus,  int options);

17

18



10

Copyright © 2026 David B. JohnsonCOMP 321 Page 19

The “Tree” of All Processes
The parent/child relationship created by fork() makes all processes form a tree

• The initial process created at “boot time” is called “init” (pid = 1)
‒ init forks one child for log in on each hardware terminal
‒ init forks one child for each of several “daemons” (services) such as “sshd”

• Each login process eventually exec’s your login shell
‒ When you log out, your shell exits

• init loops, calling wait() to reap each of its children
‒ When init sees a log in process exit, it forks to create a new child for log in

• If any process terminates while some of its children are still running
‒ They are inherited by (“reparented to”) init, so will be reaped when needed

Copyright © 2026 David B. JohnsonCOMP 321 Page 20

pid_t wpid;
Int  wstatus, i;

for (i = 0; i < N; i++)
if (fork() == 0)

exit(100 + i); /* exit a child process */

for (i = 0; i < N; i++) {
wpid = wait (&wstatus);
if (WIFEXITED(wstatus))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(wstatus));

else
printf("Child %d terminated abnormally\n", wpid);

}

A wait() Example

WIFEXITED and WEXITSTATUS are 
defined by #include <sys/wait.h>

Sees processes in the 
arbitrary order they exit

19

20



11

Copyright © 2026 David B. JohnsonCOMP 321 Page 21

pid_t pid[N], wpid;
Int  wstatus, i;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100 + i); /* exit a child process */

for (i = 0; i < N; i++) {
wpid = waitpid(pid[i], &wstatus, 0);
if (WIFEXITED(wstatus))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(wstatus));

else
printf("Child %d terminated abnormally\n", wpid);

}

A waitpid() Example

WIFEXITED and WEXITSTATUS are 
defined by #include <sys/wait.h>

Sees processes in the order 
created, given their order 

in pid[] array

Copyright © 2026 David B. JohnsonCOMP 321 Page 22

Getting Process IDs

fork() tells your parent the process ID of the new child process
• For the child process (or any process) to gets its own process ID, getpid()

‒ Always succeeds, perhaps the simplest possible kernel call
• For the child process (or any process) to get the process ID of its own parent, 

getppid()
‒ This will generally be the process that did the fork() to create you
‒ But if your parent already terminated earlier, you will have been inherited 

by (reparented to) init = process id 1

pid_t getpid(void);
pid_t getppid(void);

21

22



12

Copyright © 2026 David B. JohnsonCOMP 321 Page 23

Possible Alternatives to Fork() in Other OSs
Example: Digital Equipment Corporation VMS Operating System

status = sys$creprc ( 12 arguments );
Example: Microsoft Windows Operating System

status = CreateProcess ( 10 arguments );
In both cases, many arguments are complex structs or arrays of structs

These operations are basically the combination of fork plus exec
• Creates a new process and starts that process running some specified program
• In Unix/Linux, fork and exec are two separate operations

‒ And you can do anything you want to in the new process (the child) after 
the fork and before you make the child call exec to actually run the new 
program . . .

Copyright © 2026 David B. JohnsonCOMP 321 Page 24

Examples: Between the fork and exec in the Child
• Change what file is open as standard output (stdout) in the child process

‒ Example:  ./foo > output_file
• Change while file is open as standard input (stdin) in the child process

‒ Example: ./foo < input_file
• Change the child process’s user id (change who the child is running as)
• Define resource limits for the child (e.g., how much memory can be used)

If done by the child after fork returns and before calling exec, these changes 
affect the child’s execution but do not disturb the parent at all

Things like sys$creprc or CreateProcess must encode these kinds of changes in 
their complicated many arguments, instead of the 0 arguments for Unix fork

23

24


