Some fork() “Puzzles”

COMP 321

Dave Johnson

% RICE

COMP 321 Copyright © 2026 David B. Johnson

Page 1

What Does This Program Do?

int
main(void)
{
inti;
for (i=0; i< 2; i++) How many times does “hello\n”
forI;()' ’ get printed?
printf(“hello\n");
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson

Page 2




i=0
return PC =——

int main(void) {

inti;

for (i=0;i<2;i++)
fork();

printf(“hello\n");

exit(0);

pid = 20

COMP 321 Copyright © 2026 David B. Johnson Page 3
int main(void) {
inti;
i=0 for (i=0;i<2;i++)
return PC ——— fork();
printf(“hello\n");
exit(0);
id=21 -
pid pid =20
int main(void) {
int i;
i=0 for (i=0;i<2;i++)
return PC fork();
printf(“hello\n");
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 4




i=1

return PC =——

inti;

int main(void) {

for (i=0;i<2;i++)
fork();
printf(“hello\n");

exit(0);
pid =21 oid = 20 pid =22
int main(void) { int main(void) {
inti; inti;
i=0 for (i=0;i<2;i++) i=1 for (i=0;i<2;i++)
return PC fork(); return PC = fork();
printf(“hello\n"); printf(“hello\n");
exit(0); exit(0);
} }
COMP 321 Copyright © 2026 David B. Johnson Page 5
int main(void) {
inti;
i=1 for (i=0;i<2;i++)
return PC ——— fork();
printf(“hello\n");
exit(0);
pid =21 oid = 20 pid =22
int main(void) { int main(void) {
int i; inti;
i=1 for (i=0;i<2;i++) i=1 for (i=0;i<2;i++)
return PC fork(); return PC = fork();
printf(“hello\n"); printf(“hello\n");
exit(0); exit(0);
} }
pid =23
int main(void) {
inti;
i=1 for (i=0; i< 2; i++)

COMP 321

return PC ————pfork();

printf(“hello\n");
exit(0);

Copyright © 2026 David B. Johnson




int main(void) {
inti;
i=1 for (i=0;i<2;i++)
return PC ——— fork();
printf(“hello\n");
exit(0);
.pld —.21 . oid = 20 . . . pid =22
int main(void) { int main(void) {
inti; inti;
i=1 for (i=0;i<2;i++) i=1 for (i=0;i<2;i++)
return PC fork(); return PC =——— fork();
printf(“hello\n"); printf(“hello\n");
exit(0); exit(0);
} }
pid =23
int main(void) {
) inti;
i=1 for (i = 0;i < 2; i++) “hello\n” is printed 4 times, once
return PC ——————fork();
printf(“hello\n"); by each of the 4 processes
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 7

What Does This Program Do?

void doit(void)

{
fork();
fork();
intf(“hello\n");
} printf(“hello\n"); How many times does “hello\n”

get printed?

int main(void)

{
doit();
printf("hello\n");
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson

Page 8




void doit(void) { int main(void) {
—t—pp fork(); doit();

fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);

} }

pid =30
COMP 321 Copyright © 2026 David B. Johnson Page 9
9
void doit(void) { int main(void) {
—t—pp- fork(); doit();

fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);

} }

pid =30
pid =31
void doit(void) { int main(void) {
——p fork(); doit();
fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 10

10



void doit(void) {

int main(void) {

—t—pp fork(); doit();
——p fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);
} }
pid =30
pid =31 pid = 32
void doit(void) { int main(void) { void doit(void) { int main(void) {
——p fork(); doit(); fork(); doit();
fork(); printf(“hello\n”); ——p fork(); printf(“hello\n”);
printf(“hello\n"); exit(0); printf(“hello\n"); exit(0);
} }
COMP 321 Copyright © 2026 David B. Johnson Page 11
11
void doit(void) { int main(void) {
fork(); doit();
——pp fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);
}
pid =30
pid =31 pid = 32
void doit(void) { int main(void) { void doit(void) { int main(void) {

— fork(); doit(); fork(); doit();
——fork(); printf(“hello\n”); ——p fork(); printf(“hello\n”);
printf(“hello\n"); exit(0); printf(“hello\n"); exit(0);

} }
\ pid =33
void doit(void) { int main(void) {
fork(); doit();
p-fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 12

12




void doit(void) {

int main(void) {

fork(); doit();
fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);
}
pid =30
pid =31 pid = 32
void doit(void) { int main(void) { void doit(void) { int main(void) {
fork(); doit(); fork(); doit();
fork(); printf(“hello\n”); fork(); printf(“hello\n”);
printf(“hello\n"); exit(0); printf(“hello\n"); exit(0);
} }
\ pid =33
void doit(void) { int main(void) {
fork(); doit();
fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);
} }
COMP 321 Copyright © 2026 David B. Johnson Page 13
13
void doit(void) { int main(void) {
fork(); doit();
fork(); printf(“hello\n”);
printf(“hello\n"); exit(0);
}
pid =30
pid =31 pid = 32
void doit(void) { int main(void) { void doit(void) { int main(void) {
fork(); doit(); fork(); doit();
fork(); printf(“hello\n”); fork(); printf(“hello\n”);
printf(“hello\n"); exit(0); printf(“hello\n"); exit(0);
} }
\ pid = 33
void doit(void) { int main(void) { “hello\n” is printed 8
fork(); doit(); i i i
fork(): orintf(“hello\n”); tlmgs, twice (doit and
printf(“hello\n"); exit(0); main) by each of the
! 4 processes

COMP 321

Copyright © 2026 David B. Johnson

Page 14

14




What Does This Program Do?

int
main

{

(void)
intx=3;

if (fork() !'=0)

What values of x get printed?

printf("x = %d\n", ++x);

printf("x = %d\n", --x);
exit(0);

COMP 321 Copyright © 2026 David B. Johnson Page 15
15
int main(void) {
x=3 intx =3;
return PC ——> if (fork() 1= 0)
printf("x = %d\n", ++x);
printf("x = %d\n", --x);
exit(0);
}
pid =40
COMP 321 Copyright © 2026 David B. Johnson Page 16

16




x=3

return PC —

int main(void) {
intx=3;
—p if (fork() !=0)
printf("x = %d\n", ++x);
printf("x = %d\n", --x);
exit(0);

pid =40

pid =41
int main(void) {
x=3 intx=3;
return PC ——3> if (fork() = 0)
printf("x = %d\n", ++x);
printf("x = %d\n", --x);
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 17
17
int main(void) {
Xx=3 intx=3;
g Uy — A7 return PC =——f—p» if (fOI’k() I= 0)
The parent prints “x=4 N printf(" = %d\n", ++x);
printf("x = %d\n", --x);
exit(0);
}
pid =40
pid =41
int main(void) {
x=3 int x=3;
return PC ——3> if (fork() = 0)
printf("x = %d\n", ++x);
printf("x = %d\n", --x);
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 18

18




The parent prints “x =4"

pid =41

x=3
return PC —
x=4
x=3

int main(void) {

——p if (fork() !=0)

intx=3;

printf("x = %d\n", ++x);
printf("x = %d\n", --x);
exit(0);

int main(void) {
x=3 int x=3;

return PC ——> if (fork() !=0)
printf("x = %d\n", ++x);

pid =40

The parent then prints “x =3"

and the child prints “x = 2"

x=2 pr?ntf(“x = %d\n", --x);
} exit(O); “x = 4” must occur before
“x=3", but “x = 2" can
interleave anywhere in there
COMP 321 Copyright © 2026 David B. Johnson Page 19
19
What Does This Program Do?
int counter = 1;
int
main(void)
{
if (fork() == 0) { What values of counter get printed?
counter--;
exit(0);
}else {
wait(NULL);
printf("counter = %d\n", ++counter);
}
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 20
20

10



int counter = 1;

int main(void)

counter=1 |{
L if (fork() == 0) {
counter--;
exit(0);
} else {
wait(NULL);
printf("counter = %d\n", ++counter);
exit(0);
}
pid =50
COMP 321 Copyright © 2026 David B. Johnson Page 21
21
int counter = 1;
int main(void)
counter=1 |{
L if (fork() == 0) {
counter--;
exit(0);
}else {
wait(NULL);
printf("counter = %d\n", ++counter); pid = 51
exit(0); int counter = 1;
int main(voi
) int main(void)
id=50 counter=1
. p if (fork() == 0) {
counter--;
exit(0);
} else {
wait(NULL);
printf("counter = %d\n", ++counter);
exit(0);
COMP 321 Copyright © 2026 David B. Johnson Page 22
22

11



int counter = 1;
int main(void)
counter=1 |{
L if (fork() == 0) {
counter--;
exit(0);
} else {
wait(NULL);
printf("counter = %d\n", ++counter); pid = 51
exit(0); int counter = 1;
} int main(void)
id =50 counter=1 |{
P Ly if(fork) == 0){
counter=0 counter--;
exit(0);
}else {
counter change in the child’s address wait(fNULL); .
rintf("counter = %d\n", ++counter);
space does not affect the parent printf{ o )
exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 23
23
int counter = 1; The parent prints counter =2
int main(void)
counter=1 { No other value gets printed
L if (fork() == 0) {
counter--;
exit(0);
}else {
wait(NULL);
counter =2 printf("counter = %d\n", ++counter); pid = 51
exit(0); int counter = 1;
int main(void)
id=50 counter=1
. p if (fork() == 0) {
counter=0 counter--;
exit(0);
} else {
counter change in the child’s address wait(fNULL); .
rintf("counter = %d\n", ++counter);
space does not affect the parent printfl b )
exit(0);
COMP 321 Copyright © 2026 David B. Johnson Page 24
24

12



