
1

Copyright © 2026 David B. JohnsonCOMP 321 Page 1

Environment Variables

COMP 321

Dave Johnson

Copyright © 2026 David B. JohnsonCOMP 321 Page 2

What Is an Environment Variable?
Each process has a collection of “environment variables”
• Maintained and stored almost entirely by user library functions

‒ With just a little help from the kernel for one part
• The environment list is a collection of character strings, each defining one

environment variable, each of the form

“NAME=value”

Examples
• “HOME=/storage-home/d/dbj”
• “PATH=/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin“
• “PWD=/tmp”
• “SHELL=/bin/tcsh”

1

2

2

Copyright © 2026 David B. JohnsonCOMP 321 Page 3

Seeing Them From the Shell
Command to print all of your shell’s environment variables

$ printenv
HOME=/storage-home/d/dbj
PATH=/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
PWD=/tmp
SHELL=/bin/tcsh
etc…

Command to print any one of your shell’s environment variables
$ echo $HOME
/storage-home/d/dbj

Copyright © 2026 David B. JohnsonCOMP 321 Page 4

Where Do Environment Variables Come From?
Using csh shellUsing bash shell

SSH_CLIENT=168.5.18.34 54321 22
SSH_CONNECTION=168.5.18.34 54321 128.42.124.179 22
SSH_TTY=/dev/pts/0
etc.

Set by the mechanism through
which you accessed the system
(e.g., sshd)

HOME, SHELL, PWD, USER, LOGNAME, etc.Set by the login program
e.g., /etc/csh.cshrc
or /etc/csh.logine.g., /etc/profileSet by your shell’s system-wide

initialization file

e.g., ~/.login
or ~/.cshrc

e.g., ~/.bash_profile
or ~/.bashrc

Set by your own user initialization
file for your shell

setenv NAME VALUEexport NAME=valueSet by you on the command line

3

4

3

Copyright © 2026 David B. JohnsonCOMP 321 Page 5

The User Library Function getenv()

Returns (just) the value string for the environment variable “name”
• Searches the environment variable strings for “name=value”
• Example

char *my_home = getenv(“HOME”);
printf(“My home is: %s\n”, my_home);

prints My home is: /storage-home/d/dbj

• If the environment variable “name” is not found, getenv() returns NULL

char *getenv(const char *name);

Copyright © 2026 David B. JohnsonCOMP 321 Page 6

A global pointer to an array of char * string pointers

• The array is terminated by a NULL pointer
• All just stored as part of the data inside the user process’s address space

Where Are These Strings Stored?

extern char **environ;

“HOME=. . .”

“PATH=. . .”

“PWD=. . .”

“SHELL=. . .”

. . .

NULL

environ

5

6

4

Copyright © 2026 David B. JohnsonCOMP 321 Page 7

Environment Variables in a New Child Process
The child gets a copy of all of its parent’s environment variables
• And it just happens automatically as part of the fork!

A fork copies all of the parent’s address space to create the child
• The “environ” variable itself is in the parent’s address space
• That array of char * string pointers is in the parent’s address space
• All of the environment variable strings are in the parent’s address space
• And fork copies the entire address space, so it’s all there in the new child’s

address space, exactly where it is in the parent’s address space
• (Note: modern implementations of fork are more efficient but still have the

effect of copying the entire address space from the parent to the child)

Copyright © 2026 David B. JohnsonCOMP 321 Page 8

Environment Variables After an execve()
Doing an exec replaces the entire user process’s address space
• Everything in the address space is thrown away and replaced by loading the

new program from the file in that same process to create new address space
• So the environment variable strings are thrown away too, as part of the old

address space contents!

But the kernel helps by the execve kernel call saving these strings explicitly

• Copied into the kernel’s memory, then copied into the new address space
(the same as for the command line argv argument strings)

• All other “flavors” of exec (e.g., execl and exev) are user library calls that pass
the pointer environ as the third argument to the execve() kernel call

int execve(const char *pathname, char *const argv[], char *const envp[]);

7

8

5

Copyright © 2026 David B. JohnsonCOMP 321 Page 9

More on C Runtime “Wrapper” Code for main()
Reminder: a small piece of assembly language code (traditionally called crt0)

• The real entry point for any program (the first code to execute)

• Different systems are a bit different, but in general this code does
‒ Packages the command line arguments in argv[] format
‒ Packages the environment variable strings in environ[] format
‒ Saves that array address in the global variable environ
‒ Calls status = main(argc, argv, environ);
‒ Calls exit(status); /* library exit(), which ultimately calls kernel _exit() */

• (Nobody really ever uses the third argument to main, and the POSIX standard
doesn’t even define it, but the argument still gets passed on most systems)

9

