Environment Variables

COMP 321

Dave Johnson

% RICE

COMP 321 Copyright © 2026 David B. Johnson Page 1

What Is an Environment Variable?

Each process has a collection of “environment variables”
* Maintained and stored almost entirely by user library functions
— With just a little help from the kernel for one part
* The environment list is a collection of character strings, each defining one
environment variable, each of the form

“NAME=value”

Examples

* “HOME=/storage-home/d/dbj”

e “PATH=/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin“
* “PWD=/tmp”

* “SHELL=/bin/tcsh”

COMP 321 Copyright © 2026 David B. Johnson Page 2

Seeing Them From the Shell

Command to print all of your shell’s environment variables

S printenv

HOME=/storage-home/d/dbj

PATH=/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

PWD=/tmp
SHELL=/bin/tcsh
etc...

Command to print any one of your shell’s environment variables

S echo SHOME
/storage-home/d/dbj

COMP 321

Copyright © 2026 David B. Johnson

Page 3

Where Do Environment Variables Come From?

Using bash shell

Using csh shell

Set by the mechanism through
which you accessed the system
(e.g., sshd)

SSH_CLIENT=168.5.18.34 54321 22
SSH_CONNECTION=168.5.18.34 54321 128.42.124.179 22

SSH_TTY=/dev/pts/0
etc.

Set by the login program

HOME, SHELL, PWD, USER, LOGNAME, etc.

Set by your shell’s system-wide
initialization file

e.g., /etc/profile

e.g., /etc/csh.cshrc
or /etc/csh.login

Set by your own user initialization
file for your shell

e.g., ~/.bash_profile
or ~/.bashrc

e.g., ~/.login
or ~/.cshrc

Set by you on the command line

export NAME=value

setenv NAME VALUE

COMP 321

Copyright © 2026 David B. Johnson

Page 4

The User Library Function geteny()

char *getenv(const char *name);

Returns (just) the value string for the environment variable “name”
* Searches the environment variable strings for “name=value”
* Example

char *my_home = getenv(“HOME");
printf(“My home is: %s\n”, my_home);

prints My home is: /storage-home/d/dbj

* If the environment variable “name” is not found, getenv() returns NULL

COMP 321 Copyright © 2026 David B. Johnson Page 5

Where Are These Strings Stored?

extern char **environ;

A global pointer to an array of char * string pointers

“HOME-=. . ”
“PATH=. .
“PWD=. . ”
“SHELL=. . ”

environ ——» —

|
T

NULL

* The array is terminated by a NULL pointer
* All just stored as part of the data inside the user process’s address space

COMP 321 Copyright © 2026 David B. Johnson Page 6

Environment Variables in a New Child Process

The child gets a copy of all of its parent’s environment variables
* And it just happens automatically as part of the fork!

A fork copies all of the parent’s address space to create the child

* The “environ” variable itself is in the parent’s address space

* That array of char * string pointers is in the parent’s address space

* All of the environment variable strings are in the parent’s address space

* And fork copies the entire address space, so it’s all there in the new child’s
address space, exactly where it is in the parent’s address space

* (Note: modern implementations of fork are more efficient but still have the
effect of copying the entire address space from the parent to the child)

COMP 321 Copyright © 2026 David B. Johnson Page 7

Environment Variables After an execve()

Doing an exec replaces the entire user process’s address space

* Everything in the address space is thrown away and replaced by loading the
new program from the file in that same process to create new address space

* So the environment variable strings are thrown away too, as part of the old
address space contents!

But the kernel helps by the execve kernel call saving these strings explicitly

int execve(const char *pathname, char *const argv([], char *const envpl]);

* Copied into the kernel’s memory, then copied into the new address space
(the same as for the command line argv argument strings)

* All other “flavors” of exec (e.g., execl and exev) are user library calls that pass
the pointer environ as the third argument to the execve() kernel call

COMP 321 Copyright © 2026 David B. Johnson Page 8

More on C Runtime “Wrapper” Code for main()

Reminder: a small piece of assembly language code (traditionally called crt0)
* The real entry point for any program (the first code to execute)
* Different systems are a bit different, but in general this code does

— Packages the command line arguments in argv[] format

— Packages the environment variable strings in environ[] format

—Saves that array address in the global variable environ

—Calls status = main(argc, argv, environ);

—Calls exit(status); /* library exit(), which ultimately calls kernel _exit() */

* (Nobody really ever uses the third argument to main, and the POSIX standard
doesn’t even define it, but the argument still gets passed on most systems)

COMP 321 Copyright © 2026 David B. Johnson Page 9

