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Review: Interrupts, Exceptions, and Traps
Interrupt: An asynchronous signal from a device outside the CPU
• Examples: someone typed a key on the keyboard, a disk hardware I/O request 

has completed, or packet arrived over the network

Exception: An error executing a specific CPU instruction
• Privileged instruction, memory protection, divide by zero, etc.
• The error depends on the instruction operands or circumstances

Trap: A special CPU instruction used to call kernel services (e.g., x86-64 syscall)
• Often referred to as a kernel call or system call
• Write to a file on disk, create a new process, allocate more memory, etc.
• Unlike an exception, this instruction always causes exception-like behavior
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A “Signal” is a Software Abstraction of These
Created entirely in software by operating system kernel, not by hardware
• Triggered by the kernel in response to some hardware events, such as

‒ Bad attempted memory access by this process (SIGSEGV, SIGBUS)
‒ Floating point exception by this process (SIGFPE)
‒ Attempt by this process to execute illegal instruction (SIGILL)
‒ Interrupt (control-C) typed on the keyboard (SIGINT)

• Triggered by the kernel in response to some software-only events, such as
‒ A child of this process has terminated or stopped (SIGCHLD)
‒ A software timer set by this process has expired (SIGALRM)
‒ Attempted I/O with terminal while in the background (SIGTTIN, SIGTTOU)

• See “man 7 signal” for a list of signals (each identified by a small integer)

Copyright © 2025  David B. JohnsonCOMP 321 Page 4

A Simple Example: alarm() and SIGALRM

A kernel call to set an alarm clock timer for delivery of a signal
• Arranges for a SIGALRM signal to this process after “seconds” time
• If the alarm clock is already set for this process, it is reset to “seconds”
• If “seconds” is zero, cancels the alarm clock
• Returns the number of seconds that had been left on the alarm

An abstraction of the hardware’s clock interrupt hardware mechanism
• Timer and calling interrupt handler procedure are done by hardware
• Signals, instead, are an abstraction, created by OS kernel software

unsigned int  alarm(unsigned int seconds);
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Default Behavior When a Process Receives a Signal
Each type of signal has a “default” behavior, which is one of

• Terminate the process and dump its “core” (i.e., its address space) to a file on 
disk (e.g., for debugging), or

• Just terminate the process (no core dump), or

• Stop (basically, freeze) the process’s execution, or

• Continue (i.e., resume) the process’s execution if currently stopped from a 
signal, or

• Entirely ignore the signal (no effect on the process)
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A Signal Handler Procedure can Override Default
A process may have some procedure called when certain signals received by it
• Sometimes referred to as “catching” the signal
• Conceptually similar to an interrupt/exception handler procedure
• But, again, signals are entirely all made by kernel software, not hardware
• Many types are in response to some hardware event, but it is the operating 

system kernel, in software, that causes some signal to be sent to a process

Signal handler procedure can essentially do whatever it wants to, including
• Choose to terminate the process, or
• Do something to “handle” the signal and then return from the signal handler, 

causing the process to return to where it was when the signal occurred
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Calling the Signal Handler
Basically, an asynchronous procedure call to the signal handler
• There is no procedure call instruction there in the main code
• But the procedure call to the signal handler procedure still happens, invisible 

to the main code
Main code

doing stuff . . .

resume doing stuff . . .

. .
 .

. .
 .

Signal handler procedure

handle the signal . . .

return from the signal handler

. .
 .

signal
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But Concurrency Can Create Problems
A signal can occur “when you least expect it”
• For example

• Possible final results:  X = 1 or 3

• Even worse if this is two different signal handlers, instead of main program
‒ Possible final results:  X = 1 or 2 or 3

Main program

int  X = 0

X = X + 1

signal handler

X = X + 2
movl X, %eax
addl $1, %eax
movl %eax, X

movl X, %ebx
addl $2, %ebx
movl %ebx, X
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Some Tips on Writing Safe Signal Handlers
Do not create this kind of concurrency problem for yourself
• Use only async-signal-safe functions in your signal handler
• Functions like printf, fprintf, sprintf, malloc, free, and exit are not safe, do not 

use them in a signal handler
• The “write” kernel call (such as to file descriptor 2 = standard error) is safe
• The textbook also gives you csapp sio_puts, sio_putl, sio_error, etc., functions

Be careful of the global variable errno
• The signal handler call is supposed to be invisible to the main code
• But many things you might do in a signal handler can change errno
• To protect for this, save errno at the top of your handler, restore at the bottom
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Variables Shared Between Main Code and Signal
Suppose the main code uses some variables shared with a signal handler

• The signal handler execution is supposed to be invisible to the main code

• But the signal handler could “unexpectedly” change the value of such a shared 
variable used in the main code

• The compiler doesn’t generally understand that this is possible, but it is

• To have the compiler correctly generate code for this case
‒ Such shared variables should be declared with “volatile” keyword, e.g.,

volatile int my_var;
‒ Lets the compiler know that this variable may change value unexpectedly
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Changing or Checking the Behavior for Some Signal

A process can change the behavior and/or check current behavior of a signal
• “signum” specifies which signal
• “act” points to a struct defining the desired new bahavior when that type of 

signal is received by this process
‒ If NULL, no change to signal’s behavior is made

• “oldact” points to a struct that returns current setting of this signal’s behavior
‒ If NULL, the current setting for this signal is not returned

int sigaction(int signum,
const struct sigaction * _Nullable restrict act,
struct sigaction * _Nullable restrict oldact);
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Dealing with a struct sig_action
A struct sig_action has several fields, some of which overlap or conflict
• Best practice is to

‒ Zero out the entire struct sig_action contents (e.g., with memset)
‒ Then set just the fields in it that you need

• The most important fields are sa_handler and sa_action
‒ Both define handling for that type of signal, but use only one, not both

• Handler may be specified as one of
‒ SIG_DFL  – Sets handling for this type of signal back to its default
‒ SIG_IGN  – Requests to ignore this type of signal in the future
‒ Address of a function  – address of the handler procedure for this signal
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struct sigaction newact;

memset(&newact, 0, sizeof(newact));
newact.sa_handler = MySignalHandler;
newact.sa_flags = SA_RESTART;

if (sigaction(signum, &newact, NULL) < 0) /* example: signum = SIGALRM */
err(1,  “sigaction”); /* prints a message and exit(1), see “man 3 err” */

If the signal interrupts 
some kernel call, 

(generally) restart the 
kernel call after the signal 

handler returns

Setting Up a Signal Handler for Some Signal

void  MySignalHandler(int signum) 
{

/* … */
}
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Signal Synchronization: Blocking Signals
We need tools to control when certain signals are allowed (or not allowed)
• With this example, signal “signum” is blocked while executing inside the signal 

handler due to a signal “signum” – the signal for which this is the handler
• Prevents the signal handler from interfering with itself in its own execution
• This signal is blocked upon calling the signal handler, restored on return

struct sigaction newact;

memset(&newact, 0, sizeof(newact));
newact.sa_handler = MySignalHandler;
newact.sa_flags = SA_RESTART;

sigaction(signum, &newact, NULL);
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How Are Pending Signals Handled by the Kernel?
For each process, the kernel remembers (e.g., in the process’s PCB)
• pending = bitmap with 1 bit for each different type of signal

‒ A bit in the pending bitmap is set if signal of that type is pending
• blocked = bitmap with 1 bit for each type of signal

‒ A bit in the blocked bitmap is set if signals of that type are blocked

The signals that may be delivered to the process = (pending & ~blocked)
• When a signal is delivered, the corresponding bit in pending is cleared
• When a signal is unblocked, the corresponding bit in blocked is cleared

Some signals sent to a process may thus get “lost”
• While that signal is blocked, or even if they just occur very close together

Copyright © 2025  David B. JohnsonCOMP 321 Page 16

Automatically Blocking Additional Signals
struct sigaction newact;
sigset_t block_sigs;

sigemptyset(&block_sigs);
sigaddset(&block_sigs,  SIGCHLD);
sigaddset(&block_sigs,  SIGINT);

memset(&newact, 0, sizeof(newact));
newact.sa_handler = MySignalHandler;
newact.sa_flags = SA_RESTART;
newact.sa_mask = block_sigs;

if (sigaction(SIGALRM,  &newact, NULL) < 0)
err(1, “sigaction”);

These additional types of 
signals will be automatically 

blocked on calling the handler 
and restored on its return

Thus: SIGCHLD, SIGINT,
and SIGALRM get blocked
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Manually Blocking or Unblocking Signals

Can be used when needed (e.g., outside of a signal handler)

• “how” defines the kind of change to make (ignored if  set == NULL)
‒ SIG_BLOCK: block additional signals given by “set”
‒ SIG_UNBLOCK: unblock signals given by “set” (OK if already not blocked)
‒ SIG_SETMASK: change entire set of blocked signals to just “set”

• The set of blocked signals before the change can be returned in “oldset”
‒ Can be used to, e.g., restore the blocked signals back to what they were

int sigprocmask(int how, const sigset_t *_Nullable restrict set,
sigset_t *_Nullable restrict oldset);
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New Topic: Process Groups

The target of a signal may be a single process or a “process group”
• Each process is always in exactly one process group, identified by a pid_t
• Generally, a process group is a process started directly by the shell, plus that 

process’s children (and grandchildren, etc.), but this depends on the shell
• A process can use setpgid(pid, pgid) to change its own process group anytime

‒ If pid == 0, sets the calling process’s own process group id
‒ if pgid == 0, the process’s process group id is set equal to its own pid

• A process’s process group id is inherited across fork() and execve()

int setpgid(pid_t pid,  pid_t pgid);
pid_t getpgrp(void);

Note the names setpgid vs. getpgrp
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Process Group Example

A simplified version of how the shell runs commands as process groups
• The code used to run each command (in a loop, once for each command)
• Runs each command (and thus also that child process’s own child 

processes if any) as its own process group

pid_t pid = fork();
if (pid == 0) {

setpgid(0,  0);
execv(pathname, args);

} else {
wait(NULL);

}

Another library version of exec

While still running the shell, 
the child sets own process 
group equal to its own pid
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Manually Sending a Signal

Manually sends any signal “sig” to a process or a process group

• The target depends on the value of pid

‒ If pid > 0, target is that specific process
‒ If pid == 0, target is every process in this process’s own process group
‒ If pid == -1, target is every process this process has permission to send to
‒ if pid < -1, target is every process in process group (-pid)

• If sig == 0, no signal is sent, but other checks are still performed

‒ Can be used, e.g., to check the existence of a process with a given pid

int  kill(pid_t pid,  int sig);

Used, e.g., by the “kill” command

Note “/bin/kill” vs. shell’s built-in
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Foreground and Background Process Groups
The real power of process groups

• Suppose you run  “cmd1 &”  and then  “cmd2” (with no &)  from the shell

‒ What happens when you type control-C on the terminal?

‒ Which one of cmd1 and/or cmd2 gets terminated?

• Suppose you run  “cmd1 &”,  “cmd2 &”,  and  “cmd3 &”  from the shell

‒ What happens when one of them tries to read from standard input?

‒ When you type something, which one gets it?

• These kinds of problems are resolved by the foreground process group vs. 
background process groups

‒ Defined by the process group of the terminal on which these are running
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Terminal Process Groups

Defining the process group of a terminal
• A terminal is always controlled by only a single process group
• Normally, this is the process group running in the foreground on that terminal
• For the shell, running a new process (i.e., command) and/or “fg” or “bg”

cause the shell to change the terminal’s process group
‒ Always set to the process group id of the current foreground group

• These are library functions, really implemented by calling the kernel calls
“int  ioctl(int fd,  TIOCGPGRP, pid_t *argp)” and
“int  ioctl(int fd,  TIOCSPGRP, pid_t *argp)”

pid_t tcgetpgrp(int fd);
int tcsetpgrp(int fd,  pid_t pgrp);
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Signals Sent by Typing on the Terminal
There are 3 different characters you can type to cause terminal to send a signal

• control-C    – The terminal sends a SIGINT (interrupt) signal

‒ Default behavior is to terminate the process

• control-\ – The terminal sends a SIGQUIT (quit) signal

‒ Default behavior is to terminate the process and dump core for it

• control-Z    – The terminal sends a SIGTSTP (terminal stop) signal

‒ Default behavior is to stop the process (until SIGCONT)

In all cases, the signal is sent (only) to the process group matching the 
terminal’s process group (the foreground process group)
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Reading and Writing the Terminal
Reading from the terminal
• Can only be done by the foreground process group
• If the process is not in the foreground group, the terminal sends a SIGTTIN 

(terminal input) signal to the process group attempting the read
• Causes all processes in that process group to stop (until SIGCONT)

Writing to the terminal
• Can normally be done by foreground or background processes
• But if TOSTOP output mode is set on the terminal and the process is not in the 

foreground group, the terminal sends a SIGTTOU (terminal output) signal to 
the process group attempting the write

• Causes all processes in that process group to stop (until SIGCONT)
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Expanded Use of the waitpid() Kernel Call

Can wait for events other than just child process termination

• (Again, pid == -1 means to wait for any process without regard to process ids)

• “options” should be the logical OR of needed options

‒ WUNTRACED  – Return info also for child processes that have been 
stopped, e.g., due to terminal process groups
oun-“traced” refers to child processes of gdb being debugged, which 

always return status when stopped at a breakpoint)

‒ WNOHANG  – If nothing to report, return immediately rather than 
“hanging” (returns 0)

pid_t waitpid(pid_t pid,  int *_Nullable wstatus,  int options);
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Reaping All New Child Status Changes
Need to reap all new child status changes in a single SIGCHLD handler call
• There is only a single “pending” bit for each type of signal
• Additional pending signals of the same type get OR’d together in that single bit
• Thus, a single SIGCHLD handler call must be able to reap all new changes

while ((pid = waitpid(-1, &wstatus, WUNTRACED|WNOHANG)) > 0) {
/* handle status for process “pid” */

}

time
SIGCHLD SIGCHLD SIGCHLD SIGCHLD

SIGCHLD handler SIGCHLD handler
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Summary Definition of Some Signals
• SIGKILL – Terminate the process (can’t be caught by a signal handler)
• SIGTERM – Terminate the process (default for the “kill” command)
• SIGCHLD – Report exited child (or other status changes of a child process) 
• SIGALRM – A software timer set by this process has expired
• SIGINT – Control-C typed, sent to the foreground process group
• SIGQUIT – Control-\ typed, sent to the foreground process group
• SIGCONT – Restart a process stopped from an earlier signal
• SIGSTOP – Stop the process until restarted with SIGCONT
• SIGTSTP – Control-Z typed, sent to the foreground process group
• SIGTTIN – Attempted background terminal input, sent to that process group
• SIGTTOU – Attempted background terminal output (with TOSTOP enabled)
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