
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Signals

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Review: Interrupts, Exceptions, and Traps
Interrupt: An asynchronous signal from a device outside the CPU
• Examples: someone typed a key on the keyboard, a disk hardware I/O request

has completed, or packet arrived over the network

Exception: An error executing a specific CPU instruction
• Privileged instruction, memory protection, divide by zero, etc.
• The error depends on the instruction operands or circumstances

Trap: A special CPU instruction used to call kernel services (e.g., x86-64 syscall)
• Often referred to as a kernel call or system call
• Write to a file on disk, create a new process, allocate more memory, etc.
• Unlike an exception, this instruction always causes exception-like behavior

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

A “Signal” is a Software Abstraction of These
Created entirely in software by operating system kernel, not by hardware
• Triggered by the kernel in response to some hardware events, such as

‒ Bad attempted memory access by this process (SIGSEGV, SIGBUS)
‒ Floating point exception by this process (SIGFPE)
‒ Attempt by this process to execute illegal instruction (SIGILL)
‒ Interrupt (control-C) typed on the keyboard (SIGINT)

• Triggered by the kernel in response to some software-only events, such as
‒ A child of this process has terminated or stopped (SIGCHLD)
‒ A software timer set by this process has expired (SIGALRM)
‒ Attempted I/O with terminal while in the background (SIGTTIN, SIGTTOU)

• See “man 7 signal” for a list of signals (each identified by a small integer)

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

A Simple Example: alarm() and SIGALRM

A kernel call to set an alarm clock timer for delivery of a signal
• Arranges for a SIGALRM signal to this process after “seconds” time
• If the alarm clock is already set for this process, it is reset to “seconds”
• If “seconds” is zero, cancels the alarm clock
• Returns the number of seconds that had been left on the alarm

An abstraction of the hardware’s clock interrupt hardware mechanism
• Timer and calling interrupt handler procedure are done by hardware
• Signals, instead, are an abstraction, created by OS kernel software

unsigned int alarm(unsigned int seconds);

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Default Behavior When a Process Receives a Signal
Each type of signal has a “default” behavior, which is one of

• Terminate the process and dump its “core” (i.e., its address space) to a file on
disk (e.g., for debugging), or

• Just terminate the process (no core dump), or

• Stop (basically, freeze) the process’s execution, or

• Continue (i.e., resume) the process’s execution if currently stopped from a
signal, or

• Entirely ignore the signal (no effect on the process)

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

A Signal Handler Procedure can Override Default
A process may have some procedure called when certain signals received by it
• Sometimes referred to as “catching” the signal
• Conceptually similar to an interrupt/exception handler procedure
• But, again, signals are entirely all made by kernel software, not hardware
• Many types are in response to some hardware event, but it is the operating

system kernel, in software, that causes some signal to be sent to a process

Signal handler procedure can essentially do whatever it wants to, including
• Choose to terminate the process, or
• Do something to “handle” the signal and then return from the signal handler,

causing the process to return to where it was when the signal occurred

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Calling the Signal Handler
Basically, an asynchronous procedure call to the signal handler
• There is no procedure call instruction there in the main code
• But the procedure call to the signal handler procedure still happens, invisible

to the main code
Main code

doing stuff . . .

resume doing stuff . . .

. .
 .

. .
 .

Signal handler procedure

handle the signal . . .

return from the signal handler

. .
 .

signal

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

But Concurrency Can Create Problems
A signal can occur “when you least expect it”
• For example

• Possible final results: X = 1 or 3

• Even worse if this is two different signal handlers, instead of main program
‒ Possible final results: X = 1 or 2 or 3

Main program

int X = 0

X = X + 1

signal handler

X = X + 2
movl X, %eax
addl $1, %eax
movl %eax, X

movl X, %ebx
addl $2, %ebx
movl %ebx, X

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Some Tips on Writing Safe Signal Handlers
Do not create this kind of concurrency problem for yourself
• Use only async-signal-safe functions in your signal handler
• Functions like printf, fprintf, sprintf, malloc, free, and exit are not safe, do not

use them in a signal handler
• The “write” kernel call (such as to file descriptor 2 = standard error) is safe
• The textbook also gives you csapp sio_puts, sio_putl, sio_error, etc., functions

Be careful of the global variable errno
• The signal handler call is supposed to be invisible to the main code
• But many things you might do in a signal handler can change errno
• To protect for this, save errno at the top of your handler, restore at the bottom

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Variables Shared Between Main Code and Signal
Suppose the main code uses some variables shared with a signal handler

• The signal handler execution is supposed to be invisible to the main code

• But the signal handler could “unexpectedly” change the value of such a shared
variable used in the main code

• The compiler doesn’t generally understand that this is possible, but it is

• To have the compiler correctly generate code for this case
‒ Such shared variables should be declared with “volatile” keyword, e.g.,

volatile int my_var;
‒ Lets the compiler know that this variable may change value unexpectedly

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Changing or Checking the Behavior for Some Signal

A process can change the behavior and/or check current behavior of a signal
• “signum” specifies which signal
• “act” points to a struct defining the desired new bahavior when that type of

signal is received by this process
‒ If NULL, no change to signal’s behavior is made

• “oldact” points to a struct that returns current setting of this signal’s behavior
‒ If NULL, the current setting for this signal is not returned

int sigaction(int signum,
const struct sigaction * _Nullable restrict act,
struct sigaction * _Nullable restrict oldact);

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Dealing with a struct sig_action
A struct sig_action has several fields, some of which overlap or conflict
• Best practice is to

‒ Zero out the entire struct sig_action contents (e.g., with memset)
‒ Then set just the fields in it that you need

• The most important fields are sa_handler and sa_action
‒ Both define handling for that type of signal, but use only one, not both

• Handler may be specified as one of
‒ SIG_DFL – Sets handling for this type of signal back to its default
‒ SIG_IGN – Requests to ignore this type of signal in the future
‒ Address of a function – address of the handler procedure for this signal

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

struct sigaction newact;

memset(&newact, 0, sizeof(newact));
newact.sa_handler = MySignalHandler;
newact.sa_flags = SA_RESTART;

if (sigaction(signum, &newact, NULL) < 0) /* example: signum = SIGALRM */
err(1, “sigaction”); /* prints a message and exit(1), see “man 3 err” */

If the signal interrupts
some kernel call,

(generally) restart the
kernel call after the signal

handler returns

Setting Up a Signal Handler for Some Signal

void MySignalHandler(int signum)
{

/* … */
}

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

Signal Synchronization: Blocking Signals
We need tools to control when certain signals are allowed (or not allowed)
• With this example, signal “signum” is blocked while executing inside the signal

handler due to a signal “signum” – the signal for which this is the handler
• Prevents the signal handler from interfering with itself in its own execution
• This signal is blocked upon calling the signal handler, restored on return

struct sigaction newact;

memset(&newact, 0, sizeof(newact));
newact.sa_handler = MySignalHandler;
newact.sa_flags = SA_RESTART;

sigaction(signum, &newact, NULL);

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

How Are Pending Signals Handled by the Kernel?
For each process, the kernel remembers (e.g., in the process’s PCB)
• pending = bitmap with 1 bit for each different type of signal

‒ A bit in the pending bitmap is set if signal of that type is pending
• blocked = bitmap with 1 bit for each type of signal

‒ A bit in the blocked bitmap is set if signals of that type are blocked

The signals that may be delivered to the process = (pending & ~blocked)
• When a signal is delivered, the corresponding bit in pending is cleared
• When a signal is unblocked, the corresponding bit in blocked is cleared

Some signals sent to a process may thus get “lost”
• While that signal is blocked, or even if they just occur very close together

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Automatically Blocking Additional Signals
struct sigaction newact;
sigset_t block_sigs;

sigemptyset(&block_sigs);
sigaddset(&block_sigs, SIGCHLD);
sigaddset(&block_sigs, SIGINT);

memset(&newact, 0, sizeof(newact));
newact.sa_handler = MySignalHandler;
newact.sa_flags = SA_RESTART;
newact.sa_mask = block_sigs;

if (sigaction(SIGALRM, &newact, NULL) < 0)
err(1, “sigaction”);

These additional types of
signals will be automatically

blocked on calling the handler
and restored on its return

Thus: SIGCHLD, SIGINT,
and SIGALRM get blocked

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

Manually Blocking or Unblocking Signals

Can be used when needed (e.g., outside of a signal handler)

• “how” defines the kind of change to make (ignored if set == NULL)
‒ SIG_BLOCK: block additional signals given by “set”
‒ SIG_UNBLOCK: unblock signals given by “set” (OK if already not blocked)
‒ SIG_SETMASK: change entire set of blocked signals to just “set”

• The set of blocked signals before the change can be returned in “oldset”
‒ Can be used to, e.g., restore the blocked signals back to what they were

int sigprocmask(int how, const sigset_t *_Nullable restrict set,
sigset_t *_Nullable restrict oldset);

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

New Topic: Process Groups

The target of a signal may be a single process or a “process group”
• Each process is always in exactly one process group, identified by a pid_t
• Generally, a process group is a process started directly by the shell, plus that

process’s children (and grandchildren, etc.), but this depends on the shell
• A process can use setpgid(pid, pgid) to change its own process group anytime

‒ If pid == 0, sets the calling process’s own process group id
‒ if pgid == 0, the process’s process group id is set equal to its own pid

• A process’s process group id is inherited across fork() and execve()

int setpgid(pid_t pid, pid_t pgid);
pid_t getpgrp(void);

Note the names setpgid vs. getpgrp

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

Process Group Example

A simplified version of how the shell runs commands as process groups
• The code used to run each command (in a loop, once for each command)
• Runs each command (and thus also that child process’s own child

processes if any) as its own process group

pid_t pid = fork();
if (pid == 0) {

setpgid(0, 0);
execv(pathname, args);

} else {
wait(NULL);

}

Another library version of exec

While still running the shell,
the child sets own process
group equal to its own pid

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

Manually Sending a Signal

Manually sends any signal “sig” to a process or a process group

• The target depends on the value of pid

‒ If pid > 0, target is that specific process
‒ If pid == 0, target is every process in this process’s own process group
‒ If pid == -1, target is every process this process has permission to send to
‒ if pid < -1, target is every process in process group (-pid)

• If sig == 0, no signal is sent, but other checks are still performed

‒ Can be used, e.g., to check the existence of a process with a given pid

int kill(pid_t pid, int sig);

Used, e.g., by the “kill” command

Note “/bin/kill” vs. shell’s built-in

19

20

11

Copyright © 2025 David B. JohnsonCOMP 321 Page 21

Foreground and Background Process Groups
The real power of process groups

• Suppose you run “cmd1 &” and then “cmd2” (with no &) from the shell

‒ What happens when you type control-C on the terminal?

‒ Which one of cmd1 and/or cmd2 gets terminated?

• Suppose you run “cmd1 &”, “cmd2 &”, and “cmd3 &” from the shell

‒ What happens when one of them tries to read from standard input?

‒ When you type something, which one gets it?

• These kinds of problems are resolved by the foreground process group vs.
background process groups

‒ Defined by the process group of the terminal on which these are running

Copyright © 2025 David B. JohnsonCOMP 321 Page 22

Terminal Process Groups

Defining the process group of a terminal
• A terminal is always controlled by only a single process group
• Normally, this is the process group running in the foreground on that terminal
• For the shell, running a new process (i.e., command) and/or “fg” or “bg”

cause the shell to change the terminal’s process group
‒ Always set to the process group id of the current foreground group

• These are library functions, really implemented by calling the kernel calls
“int ioctl(int fd, TIOCGPGRP, pid_t *argp)” and
“int ioctl(int fd, TIOCSPGRP, pid_t *argp)”

pid_t tcgetpgrp(int fd);
int tcsetpgrp(int fd, pid_t pgrp);

21

22

12

Copyright © 2025 David B. JohnsonCOMP 321 Page 23

Signals Sent by Typing on the Terminal
There are 3 different characters you can type to cause terminal to send a signal

• control-C – The terminal sends a SIGINT (interrupt) signal

‒ Default behavior is to terminate the process

• control-\ – The terminal sends a SIGQUIT (quit) signal

‒ Default behavior is to terminate the process and dump core for it

• control-Z – The terminal sends a SIGTSTP (terminal stop) signal

‒ Default behavior is to stop the process (until SIGCONT)

In all cases, the signal is sent (only) to the process group matching the
terminal’s process group (the foreground process group)

Copyright © 2025 David B. JohnsonCOMP 321 Page 24

Reading and Writing the Terminal
Reading from the terminal
• Can only be done by the foreground process group
• If the process is not in the foreground group, the terminal sends a SIGTTIN

(terminal input) signal to the process group attempting the read
• Causes all processes in that process group to stop (until SIGCONT)

Writing to the terminal
• Can normally be done by foreground or background processes
• But if TOSTOP output mode is set on the terminal and the process is not in the

foreground group, the terminal sends a SIGTTOU (terminal output) signal to
the process group attempting the write

• Causes all processes in that process group to stop (until SIGCONT)

23

24

13

Copyright © 2025 David B. JohnsonCOMP 321 Page 25

Expanded Use of the waitpid() Kernel Call

Can wait for events other than just child process termination

• (Again, pid == -1 means to wait for any process without regard to process ids)

• “options” should be the logical OR of needed options

‒ WUNTRACED – Return info also for child processes that have been
stopped, e.g., due to terminal process groups
oun-“traced” refers to child processes of gdb being debugged, which

always return status when stopped at a breakpoint)

‒ WNOHANG – If nothing to report, return immediately rather than
“hanging” (returns 0)

pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);

Copyright © 2025 David B. JohnsonCOMP 321 Page 26

Reaping All New Child Status Changes
Need to reap all new child status changes in a single SIGCHLD handler call
• There is only a single “pending” bit for each type of signal
• Additional pending signals of the same type get OR’d together in that single bit
• Thus, a single SIGCHLD handler call must be able to reap all new changes

while ((pid = waitpid(-1, &wstatus, WUNTRACED|WNOHANG)) > 0) {
/* handle status for process “pid” */

}

time
SIGCHLD SIGCHLD SIGCHLD SIGCHLD

SIGCHLD handler SIGCHLD handler

25

26

14

Copyright © 2025 David B. JohnsonCOMP 321 Page 27

Summary Definition of Some Signals
• SIGKILL – Terminate the process (can’t be caught by a signal handler)
• SIGTERM – Terminate the process (default for the “kill” command)
• SIGCHLD – Report exited child (or other status changes of a child process)
• SIGALRM – A software timer set by this process has expired
• SIGINT – Control-C typed, sent to the foreground process group
• SIGQUIT – Control-\ typed, sent to the foreground process group
• SIGCONT – Restart a process stopped from an earlier signal
• SIGSTOP – Stop the process until restarted with SIGCONT
• SIGTSTP – Control-Z typed, sent to the foreground process group
• SIGTTIN – Attempted background terminal input, sent to that process group
• SIGTTOU – Attempted background terminal output (with TOSTOP enabled)

27

