System-Level 1/0O: Basics

COMP 321

Dave Johnson

COMP 321 Copyright © 2026 David B. Johnson Page 1

Doing I/0 Directly with Just Kernel Calls

The basis on which all I/0 by all programs is built
* Example: C language standard provides the “Standard 1/0” library
—But it is just implemented on top of system-level I/0 kernel calls
* 1/0 can’t be done without going through these kernel calls
—Due to user mode / kernel mode separation, only the kernel can do 1/0

Why not just always use the more familiar Standard 1/0 user library calls?
* Doing the I/O kernel calls yourself gives you more control

* Understanding system-level 1/O kernel calls is necessary in order to really
understand higher-level user |/0O libraries such as Standard I/0

COMP 321 Copyright © 2026 David B. Johnson Page 2

A Simple Example of System-Level I/O

#include <fcntl.h>
#tinclude <stdlib.h>
ttinclude <unistd.h>

Use, e.g., “man 2 open” to
see what header files to
ttinclude for each kernel call

int main()

{
int fd;
ssize_t nch;
char buf[4096];

fd = open(“message", O_RDONLY);
nch = read(fd, buf, sizeof(buf));
write(1, buf, nch);

return O;

}

COMP 321

Copyright © 2026 David B. Johnson

Page 3

A Simple Example of System-Level I/O

#include <fcntl.h>

Returns an int
file descriptor
number

#tinclude <stdlib.h>
ttinclude <unistd.h>

int main()

{

fd = open(“message", O_RDONLY);
nch = read(fd, buf, sizeof(buf));
write(1, buf, nch);

return O;

}

COMP 321

Copyright © 2026 David B. Johnson

The name of the
file to open

Should check that open() did
not return an error, but
omitted here for simplicity

Open the file for
read-only mode

Page 4

A Simple Example of System-Level I/O

; Should check that
#!nclude <fcnt_|.h> Returns the number relclwd() ot
#!nclude <Std_|'b'h> of bytes actually read b
#include <unistd.h> return an error, but
)) omitted here for
int main() Read from this file simplicity
{

int fd;
ssize_t nch; Maximum
char buf number of bytes
fd = 2", 0_RDONLY); toiread
nch = read(fd, buf, sizeof(buf));
write(1, buf, nch);
return O;
} Into this buffer
COMP 321 Copyright © 2026 David B. Johnson Page 5
A Simple Example of System-Level I/O
#include <fcntl.h> Write to file
#include <stdlib.h> descriptor number 1
#include <unistd.h>
int main() Write this number
{ of bytes
int fd;
ssize_t nch;
char buf[4 . Should check that
write() did not
fd ; ope return an error, but
nch=r .
h
write(1, buf, nch); Ll S

return O: simplicity
} \i Write from this buffer

COMP 321 Copyright © 2026 David B. Johnson

Page 6

What is This File Descriptor Number 1 Stuff?

By convention, file descriptors 0, 1, and 2 have defined existing uses

* 0 = standard input file
* 1 = standard output file
* 2 = standard error file

* Typically, these are all already open, and to the same place = the terminal
* But these can be redirected, including on the command line by the shell, e.g.,

— ./program < file # redirect file descriptor O instead from “file”
— ./program > file # redirect file descriptor 1 instead to “file”

* Even after these redirections, errors (file descriptor 2) show up on the screen
* Should really use constants defined in <unistd.h> (but 0, 1, 2 are well known)
—STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

COMP 321 Copyright © 2026 David B. Johnson Page 7

Opening a File

int open(const char *pathname, int flags);

Opens a file for the indicated (i.e., flags) type of accesses
* Set flags to one of
— O_RDONLY: open the file for reading from only
— O_WRONLY: open the file for writing to only
—O_RDWR: open the file for reading from and/or writing to

* Returns the lowest numbered file descriptor number that is not currently
open in this process to something else

* Returns -1 on any error and sets global variable errno to indicate which error

COMP 321 Copyright © 2026 David B. Johnson Page 8

Opening a File

int open(const char *pathname, int flags);

The flags argument may also include other bits, such as

—O_APPEND: On each write() to this open fd, always move to the end
of the file first (every write() only appends to the file)

—O_TRUNC: If the file exists (and if possible), truncate the file to empty
on the open()

* Specify flags as the “or” of what you need, e.g.,
—open(name, O_RDWR | O_APPEND)
—open(name, O_WRONLY | O_TRUNC)

COMP 321 Copyright © 2026 David B. Johnson Page 9

Creating a File

int creat(const char *pathname, mode_t mode);

int open(const char *pathname, int flags, mode_t mode);

Creates a new, empty file, returning a file descriptor number

* On open(), if creating a new file (e.g., mode includes O_CREAT), then the
mode argument gives the new file’s protection (discussed later)

— Otherwise, mode on open() is ignored or can be omitted
— Calling creat() is equivalent to calling open() with
flags = (O_WRONLY | O_CREAT | O_TRUNC)
* Returns the lowest numbered file descriptor number that is not currently
open in this process to something else
* Returns -1 on any error and sets global variable errno to indicate which error

COMP 321 Copyright © 2026 David B. Johnson Page 10

10

The Current File Offset in an Open File Descriptor

Each open file descriptor has an associated position (i.e., offset) within the file
* The model is something like accessing a file stored on magnetic tape, such as

\ CARTRIDGE TAPE

4 1/2” wide tape 4

Image from Wikimedia Commons Image from obsoletemedia.org
COMP 321 Copyright © 2026 David B. Johnson Page 11

1/4” wide tape I

11

The Current File Offset in an Open File Descriptor

Each open file descriptor has an associated position (i.e., offset) within the file

* The current file offset is initialized to O (i.e., the beginning of the file) when
the file descriptor is opened (e.g., from open or creat)

* A single current fd offset is used jointly for both reading and writing this fd

—Any read from this fd advances the fd’s offset by the number of bytes
actually read

— Any write to this fd advances this same offset by the number of bytes
actually written

* Example: repeated reading from the file sequentially transfers each next part
of the file, until reaching the end of the file

COMP 321 Copyright © 2026 David B. Johnson Page 12

12

Reading a File

ssize_t read(int fd, void *buf, size_t count);

Reads from the contents of a file into memory beginning at address buf
* The file must already be open; fd specifies which file to read from
* File data is transferred starting at fd current offset, sequentially into buf
* The maximum number of bytes to read is given by count
— Tries to read requested count, returns the number of bytes actually read
— Number read may be less than requested (a “short count”)
—This is not an error! We’ll talk more about this later
* Returns 0 if fd was already positioned at the end of the file (no more to read)
* Returns -1 on any error and sets global variable errno to indicate which error

COMP 321 Copyright © 2026 David B. Johnson Page 13

13

Writing a File

ssize_t write(int fd, const void *buf, size_t count);

Writes into the contents of a file from memory beginning at address buf

* The file must already be open — fd specifies which file to write to

* File data is transferred sequentially from buf, starting at fd current position

* The maximum number of bytes to write is given by count
— Tries to write requested count, returns the number of bytes actually written
— Number written may be less than requested (a “short count”)
—This is not an error! We’ll talk more about this later

* Returns -1 on any error and sets global variable errno to indicate which error

COMP 321 Copyright © 2026 David B. Johnson Page 14

14

#include <stdio.h> Very inefficient since it does

#include <unistd.h> two kernel calls for each
int main() character being copied
{

char c;

ssize_t nch;

while ((nch = read(STDIN_FILENO, &c, 1)) == 1)
write(STDOUT_FILENO, &c, 1);

Reads from standard
input, 1 byte at a time

Writes to standard

if (nch ==0)

printf("Stopped at end of file.\n");
else if (nch < 0)

printf("Stopped on read error\n");

return O;

COMP 321 Copyright © 2026 David B. Johnson

— output, 1 byte at a time

Page 15

15

#include <stdio.h>
#include <unistd.h>
#define SIZE 4096

int main()

{

}

char buff[SIZE];
ssize_t nch;

while (1) {

if ((nch = read(STDIN_FILENO, buff, SIZE)) <= 0) break;
write(STDOUT_FILENO, buff, nch);

Reads from standard input,
up to SIZE bytes at a time

}
if (nch ==0)

printf("Stopped at end of file.\n");
else if (nch < 0)

printf("Stopped on read error\n");
return O;

COMP 321 Copyright © 2026 David B. Johnson

Writes to standard output, in
the sizes that were read

Page 16

16

#include <fentl.h>
#include <stdio.h>
#include <unistd.h>
#define SIZE 4096

int main()

{
char buff[SIZE];
ssize_t nch;
intin_fd, out_fd;

Opens “input” to read from
(opens read-only)

in_fd = open("input", O_RDONLY);
out_fd = open("output", O_WRONLY | O_CREAT | O_TRUNC, 0666);

while (1) {

if ((nch = read(in_fd, buff, SIZE)) <= 0) break;

write(out_fd, buff, nch);

}

return O;

}

COMP 321

Opens “output” to write to (opens for
writing) — if “output” doesn’t exist, it is
created, or otherwise it is truncated

Copyright © 2026 David B. Johnson Page 17

17

#include <fcntl.h>
#include <unistd.h>

int main()

{

char c;
ssize_t nch;

intin_fd1, in_fd2, out_fd;

in_fd1 and in_fd2 current
in_fd1 = open("input", O_RDONLY); positions are independent

A silly thing to do with
multiple file descriptors

For example purposes only!

in_fd2 = open("input", O_WRONLY);
out_fd = open("output", O_WRONLY | O_CREAT | O_TRUNC, 0666);

while (1) {

if ((nch = read(in_fd1, &c, 1)) != 1) break; Copies from “input” to “output”,
write(out_fd, &c, 1);
write(in_fd2, "X", 1);

}

return O;

}

COMP 321

1 character at a time, but also
overwrites each character in
“input” with an “X”

Copyright © 2026 David B. Johnson Page 18

18

Explicitly Moving a File Descriptor’s File Offset

off t Iseek(int fd, off t offset, int whence);

Changes current offset for file descriptor fd to new position in the file’s data

* The new fd offset is set to “offset” number of bytes relative to “whence”
—SEEK_SET: fd offset is set to offset bytes (absolute)
—SEEK_CUR: fd offset is set to current position plus offset bytes
—SEEK_END: fd offset is set to the size (bytes) of the file plus offset bytes

* In general, “offset” may be negative (e.g., offset = -100, whence = SEEK_CUR)

* Returns

— The fd’s new file offset, on success
— -1 on any error and sets global variable errno to indicate which error

COMP 321 Copyright © 2026 David B. Johnson Page 19
19
Explicitly Moving a File Descriptor’s File Offset
off t Iseek(int fd, off t offset, int whence);
Examples
lseek(fd, 0, SEEK_SET)
* “Rewinds” the file
lseek(fd, 55, SEEK_CUR)
* Skips forward 55 bytes
lseek(fd, -10, SEEK_END)
7 ’ =] * Moves to 10 bytes before
Image from Wikimedia Commons the end of the file
COMP 321 Copyright © 2026 David B. Johnson Page 20
20

10

int main()

{ A silly thing to do with Iseek

char c; For example purposes only!

ssize_t nch;
intin_fd, out_fd;
off_t offset;

in_fd = open("input", O_RDONLY);

out_fd = open("output", O_WRONLY | O_CREAT | O_TRUNC, 0666);

offset = Iseek(in_fd, -1, SEEK_END);
while (1) {
if ((nch = read(in_fd, &c, 1)) I= 1) break;
write(out_fd, &c, 1);
if (offset == 0) break;
offset = Iseek(in_fd, -2, SEEK_CUR);
}

return O;

}

Copies characters from “input”
to “output” but reads them in
reverse order!

COMP 321 Copyright © 2026 David B. Johnson Page 21

21

If “input” is a copy of the program’s source code, turns it into this in “output

”

}

;0 nruter

}

;JRUC_KEES ,2-,df ni(keesl = tesffo
;kaerb)0 == tesffo(fi

;)1,c& ,df_tuo(etirw

;kaerb)1=!))1,c& ,df _ni(daer = hen((fi
{)1(elihw

;)DNE_KEES ,1- ,df_ni(keesl = tesffo

;)6660 ,CNURT_O | TAERC_O | YLNORW_O ,"tuptuo"(nepo = df tuo

;)YLNODR_O ,"tupni"(nepo = df_ni
;tesffo t_ffo

;df_tuo ,df_ni tni

;hen t_eziss

;crahc

{

)(niam tni

COMP 321 Copyright © 2026 David B. Johnson Page 22

22

11

Closing a File Descriptor

int close(int fd);

Closes an existing open file descriptor

* Doesn’t matter whether opened, e.g., from open() or creat() or otherwise

* Returns O on success

* Returns -1 on any error, such as if this file descriptor is not currently open

* Any later accesses to closed file descriptor will return -1 with errno = EBADF
* But this file descriptor number is now available for the next open(), etc.

— That will always return the lowest numbered file descriptor number that is
not currently open in this process to something else

—Warning: this reuse of that file descriptor number can create/hide bugs if
you didn’t mean to close that file descriptor

COMP 321 Copyright © 2026 David B. Johnson Page 23

23

Why Open a File Before Reading/Writing It?

Much more efficient than finding the file by pathname on every access
* Example: pathname “/usr/share/man/man2/open.2.gz” — (from “man 2 open”)

— Must search in “/” directory for “usr”, then search there for “share”, then
search there for “man”, then search there for “man2”, and finally search
there for “open.2.gz”

— More efficient to do just once on the open, not on every read, write, etc.

Allows the kernel to easily remember this open file’s current file offset
* Start remembering on open, keep remembering only while fd is open

More efficient to check file protections only at file open
* Remember verified O_RDONLY, O_ WRONLY, or O_RDWR just like fd offset

COMP 321 Copyright © 2026 David B. Johnson Page 24

24

12

Unix File Types

* Regular file: The most common type of file, may contain anything, “regular”
— All the examples we have looked at here have used only regular files

* Directory file: A file that gives names to files and gives the files’ locations
— Generally the second most common type of file

* Block special file: A file that represents a “block”-oriented device

* Character special file: A file that represents a “character”-oriented device

* FIFO: Used for communication between processes (a “pipe” or named “pipe”)

* Socket: Used for network communication (e.g., over the Internet)

* Symbolic link: A file that gives an “alternate” name for some other file

COMP 321 Copyright © 2026 David B. Johnson Page 25

25

Getting Information About Files

int stat(const char *restrict pathname, struct stat *restrict statbuf);
int fstat(int fd, struct stat *statbuf);

Return metadata about a file into the “struct stat” pointed to by statbuf
* Metadata is data about data, here the information about the file

* Two equivalent interfaces
—stat: the file is indicated by char *pathname (without opening the file)
—fstat: the file is indicated by an already open file descriptor fd

* On Linux, the struct stat format is defined in “man 3type stat”
(on other systems, generally in “man 2 stat”)

COMP 321 Copyright © 2026 David B. Johnson Page 26

26

13

Contents of a “struct stat”

struct stat {
dev_t st_dev; /* ID of device on which the file resides */
ino_t st_ino; /* inode number representing the file */
mode_t st_mode; /* file protection and file type */
nlink_t st_nlink; /* number of hard links to the file (to the file’s inode) */

uid_t st_uid; /* user ID of file owner */

gid_t st_gid; /* group ID of file owner */

dev_t st_rdev; /* device type (if the inode represents a special file) */
off t st_size; /* total size, in bytes */

blksize t st_blksize; /* “preferred” block size for filesystem 1/0 */
blkent_t st_blocks; /* number of 512-byte blocks allocated */
struct timespec st_atim; /* time of last access to file */

struct timespec st_mtim; /* time of last modification to file data */
struct timespec st_ctim; /* time of last status change (last change to inode) */

|3
COMP 321 Copyright © 2026 David B. Johnson Page 27
27
int main()
{
struct stat statbuf;
fstat(STDIN_FILENO, &statbuf);
printf("Type of file on standard input: ");
switch (statbuf.st_mode & S_IFMT) {
case S_IFREG: printf("regular file\n"); break;
case S_IFDIR: printf("directory file\n"); break;
case S_IFBLK: printf("block device\n"); break;
case S_IFCHR: printf("character device\n"); break;
case S_IFIFO: printf("FIFO\n"); break;
case S_IFSOCK: printf("socket\n"); break;
case S_IFLNK: printf("symbolic link\n"); break;
default: printf("unknown?\n"); break;
}
return 0;
}
COMP 321 Copyright © 2026 David B. Johnson Page 28
28

14

open vs. Open, read vs. Read, write vs. Write, etc.

You should always check for error returns from all kernel calls, always
* (My examples didn’t fully do this, just due to space and time considerations)

* All kernel calls return -1 on any error
—and set global variable errno to tell you the problem (see “man 3 errno”)

* The textbook provides csapp “wrapper” functions to do error checking for you

* For example, Read vs. read: ssize_t Read(int fd, void *buf, size_t count)

— But these always exit(0) the {
program (unix_error always .
. if ((rc = read(fd, buf, count)) < 0)
does exit(0)) unix_error("Read error");
— And they print an “unfriendly” return rc;
(and unhelpful?) message }

ssize trc;

COMP 321 Copyright © 2026 David B. Johnson Page 29

29

15

