
1

Copyright © 2026 David B. JohnsonCOMP 321 Page 1

System-Level I/O: Basics

COMP 321

Dave Johnson

Copyright © 2026 David B. JohnsonCOMP 321 Page 2

Doing I/O Directly with Just Kernel Calls
The basis on which all I/O by all programs is built
• Example: C language standard provides the “Standard I/O” library

‒ But it is just implemented on top of system-level I/O kernel calls
• I/O can’t be done without going through these kernel calls

‒ Due to user mode / kernel mode separation, only the kernel can do I/O

Why not just always use the more familiar Standard I/O user library calls?
• Doing the I/O kernel calls yourself gives you more control
• Understanding system-level I/O kernel calls is necessary in order to really

understand higher-level user I/O libraries such as Standard I/O

1

2

2

Copyright © 2026 David B. JohnsonCOMP 321 Page 3

#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{

int fd;
ssize_t nch;
char buf[4096];

fd = open(“message", O_RDONLY);
nch = read(fd, buf, sizeof(buf));
write(1, buf, nch);
return 0;

}

A Simple Example of System-Level I/O

Use, e.g., “man 2 open” to
see what header files to

#include for each kernel call

Copyright © 2026 David B. JohnsonCOMP 321 Page 4

Returns an int
file descriptor

number

The name of the
file to open

Open the file for
read-only mode

Should check that open() did
not return an error, but

omitted here for simplicity

A Simple Example of System-Level I/O
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{

int fd;
ssize_t nch;
char buf[4096];

fd = open(“message", O_RDONLY);
nch = read(fd, buf, sizeof(buf));
write(1, buf, nch);
return 0;

}

3

4

3

Copyright © 2026 David B. JohnsonCOMP 321 Page 5

Read from this file

Into this buffer

Maximum
number of bytes

to read

Should check that
read() did not

return an error, but
omitted here for

simplicity

Returns the number
of bytes actually read

A Simple Example of System-Level I/O
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{

int fd;
ssize_t nch;
char buf[4096];

fd = open(“message", O_RDONLY);
nch = read(fd, buf, sizeof(buf));
write(1, buf, nch);
return 0;

}

Copyright © 2026 David B. JohnsonCOMP 321 Page 6

Write this number
of bytes

Write from this buffer

Write to file
descriptor number 1

Should check that
write() did not

return an error, but
omitted here for

simplicity

A Simple Example of System-Level I/O
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{

int fd;
ssize_t nch;
char buf[4096];

fd = open(“message", O_RDONLY);
nch = read(fd, buf, sizeof(buf));
write(1, buf, nch);
return 0;

}

5

6

4

Copyright © 2026 David B. JohnsonCOMP 321 Page 7

What is This File Descriptor Number 1 Stuff?
By convention, file descriptors 0, 1, and 2 have defined existing uses
• 0 = standard input file
• 1 = standard output file
• 2 = standard error file
• Typically, these are all already open, and to the same place = the terminal
• But these can be redirected, including on the command line by the shell, e.g.,

‒ ./program < file # redirect file descriptor 0 instead from “file”
‒ ./program > file # redirect file descriptor 1 instead to “file”

• Even after these redirections, errors (file descriptor 2) show up on the screen
• Should really use constants defined in <unistd.h> (but 0, 1, 2 are well known)

‒ STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

Copyright © 2026 David B. JohnsonCOMP 321 Page 8

Opening a File

Opens a file for the indicated (i.e., flags) type of accesses
• Set flags to one of

‒ O_RDONLY: open the file for reading from only
‒ O_WRONLY: open the file for writing to only
‒ O_RDWR: open the file for reading from and/or writing to

• Returns the lowest numbered file descriptor number that is not currently
open in this process to something else

• Returns -1 on any error and sets global variable errno to indicate which error

int open(const char *pathname, int flags);

7

8

5

Copyright © 2026 David B. JohnsonCOMP 321 Page 9

Opening a File

The flags argument may also include other bits, such as
‒ O_APPEND: On each write() to this open fd, always move to the end

of the file first (every write() only appends to the file)
‒ O_TRUNC: If the file exists (and if possible), truncate the file to empty

on the open()
• Specify flags as the “or” of what you need, e.g.,

‒ open(name, O_RDWR | O_APPEND)
‒ open(name, O_WRONLY | O_TRUNC)

int open(const char *pathname, int flags);

Copyright © 2026 David B. JohnsonCOMP 321 Page 10

Creating a File

Creates a new, empty file, returning a file descriptor number
• On open(), if creating a new file (e.g., mode includes O_CREAT), then the

mode argument gives the new file’s protection (discussed later)
‒ Otherwise, mode on open() is ignored or can be omitted
‒ Calling creat() is equivalent to calling open() with

flags = (O_WRONLY | O_CREAT | O_TRUNC)
• Returns the lowest numbered file descriptor number that is not currently

open in this process to something else
• Returns -1 on any error and sets global variable errno to indicate which error

int creat(const char *pathname, mode_t mode);
int open(const char *pathname, int flags, mode_t mode);

9

10

6

Copyright © 2026 David B. JohnsonCOMP 321 Page 11

The Current File Offset in an Open File Descriptor
Each open file descriptor has an associated position (i.e., offset) within the file
• The model is something like accessing a file stored on magnetic tape, such as

Image from obsoletemedia.orgImage from Wikimedia Commons

1/2” wide tape 1/4” wide tape

Copyright © 2026 David B. JohnsonCOMP 321 Page 12

The Current File Offset in an Open File Descriptor
Each open file descriptor has an associated position (i.e., offset) within the file
• The current file offset is initialized to 0 (i.e., the beginning of the file) when

the file descriptor is opened (e.g., from open or creat)
• A single current fd offset is used jointly for both reading and writing this fd

‒ Any read from this fd advances the fd’s offset by the number of bytes
actually read

‒ Any write to this fd advances this same offset by the number of bytes
actually written

• Example: repeated reading from the file sequentially transfers each next part
of the file, until reaching the end of the file

11

12

7

Copyright © 2026 David B. JohnsonCOMP 321 Page 13

Reading a File

Reads from the contents of a file into memory beginning at address buf
• The file must already be open; fd specifies which file to read from
• File data is transferred starting at fd current offset, sequentially into buf
• The maximum number of bytes to read is given by count

‒ Tries to read requested count, returns the number of bytes actually read
‒ Number read may be less than requested (a “short count”)
‒ This is not an error! We’ll talk more about this later

• Returns 0 if fd was already positioned at the end of the file (no more to read)
• Returns -1 on any error and sets global variable errno to indicate which error

ssize_t read(int fd, void *buf, size_t count);

Copyright © 2026 David B. JohnsonCOMP 321 Page 14

Writing a File

Writes into the contents of a file from memory beginning at address buf
• The file must already be open – fd specifies which file to write to
• File data is transferred sequentially from buf, starting at fd current position
• The maximum number of bytes to write is given by count

‒ Tries to write requested count, returns the number of bytes actually written
‒ Number written may be less than requested (a “short count”)
‒ This is not an error! We’ll talk more about this later

• Returns -1 on any error and sets global variable errno to indicate which error

ssize_t write(int fd, const void *buf, size_t count);

13

14

8

Copyright © 2026 David B. JohnsonCOMP 321 Page 15

#include <stdio.h>
#include <unistd.h>

int main()
{

char c;
ssize_t nch;

while ((nch = read(STDIN_FILENO, &c, 1)) == 1)
write(STDOUT_FILENO, &c, 1);

if (nch == 0)
printf("Stopped at end of file.\n");

else if (nch < 0)
printf("Stopped on read error.\n");

return 0;
}

Very inefficient since it does
two kernel calls for each
character being copied

Reads from standard
input, 1 byte at a time

Writes to standard
output, 1 byte at a time

Copyright © 2026 David B. JohnsonCOMP 321 Page 16

#include <stdio.h>
#include <unistd.h>
#define SIZE 4096

int main()
{

char buff[SIZE];
ssize_t nch;

while (1) {
if ((nch = read(STDIN_FILENO, buff, SIZE)) <= 0) break;
write(STDOUT_FILENO, buff, nch);

}
if (nch == 0)

printf("Stopped at end of file.\n");
else if (nch < 0)

printf("Stopped on read error.\n");
return 0;

}

Reads from standard input,
up to SIZE bytes at a time

Writes to standard output, in
the sizes that were read

15

16

9

Copyright © 2026 David B. JohnsonCOMP 321 Page 17

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#define SIZE 4096

int main()
{

char buff[SIZE];
ssize_t nch;
int in_fd, out_fd;

in_fd = open("input", O_RDONLY);
out_fd = open("output", O_WRONLY | O_CREAT | O_TRUNC, 0666);
while (1) {

if ((nch = read(in_fd, buff, SIZE)) <= 0) break;
write(out_fd, buff, nch);

}

return 0;
}

Opens “input” to read from
(opens read-only)

Opens “output” to write to (opens for
writing) – if “output” doesn’t exist, it is

created, or otherwise it is truncated

Copyright © 2026 David B. JohnsonCOMP 321 Page 18

#include <fcntl.h>
#include <unistd.h>

int main()
{

char c;
ssize_t nch;
int in_fd1, in_fd2, out_fd;

in_fd1 = open("input", O_RDONLY);
in_fd2 = open("input", O_WRONLY);
out_fd = open("output", O_WRONLY | O_CREAT | O_TRUNC, 0666);

while (1) {
if ((nch = read(in_fd1, &c, 1)) != 1) break;
write(out_fd, &c, 1);
write(in_fd2, "X", 1);

}
return 0;

}

A silly thing to do with
multiple file descriptors

For example purposes only!

Copies from “input” to “output”,
1 character at a time, but also
overwrites each character in

“input” with an “X”

in_fd1 and in_fd2 current
positions are independent

17

18

10

Copyright © 2026 David B. JohnsonCOMP 321 Page 19

Explicitly Moving a File Descriptor’s File Offset

Changes current offset for file descriptor fd to new position in the file’s data

• The new fd offset is set to “offset” number of bytes relative to “whence”
‒ SEEK_SET: fd offset is set to offset bytes (absolute)
‒ SEEK_CUR: fd offset is set to current position plus offset bytes
‒ SEEK_END: fd offset is set to the size (bytes) of the file plus offset bytes

• In general, “offset” may be negative (e.g., offset = -100, whence = SEEK_CUR)
• Returns

‒ The fd’s new file offset, on success
‒ -1 on any error and sets global variable errno to indicate which error

off_t lseek(int fd, off_t offset, int whence);

Copyright © 2026 David B. JohnsonCOMP 321 Page 20

Explicitly Moving a File Descriptor’s File Offset

off_t lseek(int fd, off_t offset, int whence);

Image from Wikimedia Commons

Examples

lseek(fd, 0, SEEK_SET)
• “Rewinds” the file

lseek(fd, 55, SEEK_CUR)
• Skips forward 55 bytes

lseek(fd, -10, SEEK_END)
• Moves to 10 bytes before

the end of the file

19

20

11

Copyright © 2026 David B. JohnsonCOMP 321 Page 21

int main()
{

char c;
ssize_t nch;
int in_fd, out_fd;
off_t offset;

in_fd = open("input", O_RDONLY);
out_fd = open("output", O_WRONLY | O_CREAT | O_TRUNC, 0666);

offset = lseek(in_fd, -1, SEEK_END);
while (1) {

if ((nch = read(in_fd, &c, 1)) != 1) break;
write(out_fd, &c, 1);
if (offset == 0) break;
offset = lseek(in_fd, -2, SEEK_CUR);

}
return 0;

}

A silly thing to do with lseek

For example purposes only!

Copies characters from “input”
to “output” but reads them in

reverse order!

Copyright © 2026 David B. JohnsonCOMP 321 Page 22

}
;0 nruter
}
;)RUC_KEES ,2- ,df_ni(keesl = tesffo
;kaerb)0 == tesffo(fi
;)1 ,c& ,df_tuo(etirw
;kaerb)1 =!))1 ,c& ,df_ni(daer = hcn((fi
{)1(elihw
;)DNE_KEES ,1- ,df_ni(keesl = tesffo
;)6660 ,CNURT_O | TAERC_O | YLNORW_O ,"tuptuo"(nepo = df_tuo
;)YLNODR_O ,"tupni"(nepo = df_ni
;tesffo t_ffo
;df_tuo ,df_ni tni
;hcn t_eziss
;c rahc
{
)(niam tni

If “input” is a copy of the program’s source code, turns it into this in “output”

21

22

12

Copyright © 2026 David B. JohnsonCOMP 321 Page 23

Closing a File Descriptor

Closes an existing open file descriptor
• Doesn’t matter whether opened, e.g., from open() or creat() or otherwise
• Returns 0 on success
• Returns -1 on any error, such as if this file descriptor is not currently open
• Any later accesses to closed file descriptor will return -1 with errno = EBADF
• But this file descriptor number is now available for the next open(), etc.

‒ That will always return the lowest numbered file descriptor number that is
not currently open in this process to something else

‒ Warning: this reuse of that file descriptor number can create/hide bugs if
you didn’t mean to close that file descriptor

int close(int fd);

Copyright © 2026 David B. JohnsonCOMP 321 Page 24

Why Open a File Before Reading/Writing It?
Much more efficient than finding the file by pathname on every access
• Example: pathname “/usr/share/man/man2/open.2.gz” – (from “man 2 open”)

‒ Must search in “/” directory for “usr”, then search there for “share”, then
search there for “man”, then search there for “man2”, and finally search
there for “open.2.gz”

‒ More efficient to do just once on the open, not on every read, write, etc.

Allows the kernel to easily remember this open file’s current file offset
• Start remembering on open, keep remembering only while fd is open

More efficient to check file protections only at file open
• Remember verified O_RDONLY, O_WRONLY, or O_RDWR just like fd offset

23

24

13

Copyright © 2026 David B. JohnsonCOMP 321 Page 25

Unix File Types
• Regular file: The most common type of file, may contain anything, “regular”

‒ All the examples we have looked at here have used only regular files

• Directory file: A file that gives names to files and gives the files’ locations

‒ Generally the second most common type of file

• Block special file: A file that represents a “block”-oriented device

• Character special file: A file that represents a “character”-oriented device

• FIFO: Used for communication between processes (a “pipe” or named “pipe”)

• Socket: Used for network communication (e.g., over the Internet)

• Symbolic link: A file that gives an “alternate” name for some other file

Copyright © 2026 David B. JohnsonCOMP 321 Page 26

Getting Information About Files

Return metadata about a file into the “struct stat” pointed to by statbuf

• Metadata is data about data, here the information about the file

• Two equivalent interfaces
‒ stat: the file is indicated by char *pathname (without opening the file)
‒ fstat: the file is indicated by an already open file descriptor fd

• On Linux, the struct stat format is defined in “man 3type stat”
(on other systems, generally in “man 2 stat”)

int stat(const char *restrict pathname, struct stat *restrict statbuf);
int fstat(int fd, struct stat *statbuf);

25

26

14

Copyright © 2026 David B. JohnsonCOMP 321 Page 27

Contents of a “struct stat”
struct stat {

dev_t st_dev; /* ID of device on which the file resides */
ino_t st_ino; /* inode number representing the file */
mode_t st_mode; /* file protection and file type */
nlink_t st_nlink; /* number of hard links to the file (to the file’s inode) */
uid_t st_uid; /* user ID of file owner */
gid_t st_gid; /* group ID of file owner */
dev_t st_rdev; /* device type (if the inode represents a special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* “preferred” block size for filesystem I/O */
blkcnt_t st_blocks; /* number of 512-byte blocks allocated */
struct timespec st_atim; /* time of last access to file */
struct timespec st_mtim; /* time of last modification to file data */
struct timespec st_ctim; /* time of last status change (last change to inode) */

};

Copyright © 2026 David B. JohnsonCOMP 321 Page 28

int main()
{

struct stat statbuf;

fstat(STDIN_FILENO, &statbuf);
printf("Type of file on standard input: ");
switch (statbuf.st_mode & S_IFMT) {

case S_IFREG: printf("regular file\n"); break;
case S_IFDIR: printf("directory file\n"); break;
case S_IFBLK: printf("block device\n"); break;
case S_IFCHR: printf("character device\n"); break;
case S_IFIFO: printf("FIFO\n"); break;
case S_IFSOCK: printf("socket\n"); break;
case S_IFLNK: printf("symbolic link\n"); break;
default: printf("unknown?\n"); break;

}

return 0;
}

27

28

15

Copyright © 2026 David B. JohnsonCOMP 321 Page 29

open vs. Open, read vs. Read, write vs. Write, etc.
You should always check for error returns from all kernel calls, always

• (My examples didn’t fully do this, just due to space and time considerations)

• All kernel calls return -1 on any error
‒ and set global variable errno to tell you the problem (see “man 3 errno”)

• The textbook provides csapp “wrapper” functions to do error checking for you

• For example, Read vs. read:

‒ But these always exit(0) the
program (unix_error always
does exit(0))

‒ And they print an “unfriendly”
(and unhelpful?) message

ssize_t Read(int fd, void *buf, size_t count)
{

ssize_t rc;
if ((rc = read(fd, buf, count)) < 0)

unix_error("Read error");
return rc;

}

29

