
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

I/O Multiplexing and
Non-blocking I/O

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

read() and write() Normally Block the Process
Consider, for example, the following typical code

while ((nch = read(STDIN_FILENO, buffer, BUFFER_SIZE)) > 0)
write(STDOUT_FILENO, buffer, nch);

• Each read() call “blocks” and doesn’t return until it completes

• Each write() call then “blocks” and doesn’t return until it completes

• This may be fine in simple cases like the above

• But what if you want/need to read/write multiple files “at once” ?

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

A Simple Example
Consider something like the “ssh” command
• Read from the keyboard and write to the network connection to the computer

you are ssh’d into
• Read from the network connection from the computer you are ssh’d into and

write to the screen
• How can the ssh program do all of this (both directions) at once?

• And what about also reading from the mouse and writing to the network?

ssh command
keyboard

screen
network

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Another Example
Consider a large, very busy web server
• The web server reads/writes with one web browser client
• While it also reads/writes with another web browser client
• And with another web browser client, etc., for many clients, all at once

web serverclient 1

client 2

client 3

client 4

many more clients

.

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

A Solution: I/O Multiplexing
The basic idea
• Build a list of all the file descriptors we want to be able to do this kind of I/O on
• Repeat in a loop

‒ Give this list of file descriptors to the kernel
‒ The kernel blocks this process until at least any one of those descriptors is

ready for next I/O operation (e.g., read or write)
oExample: you typed something on the keyboard
oExample: the network is ready for the next data you want to send

‒ The process performs the read or write for each descriptors indicated ready
‒ For each of those reads or writes, the process shouldn’t need to be blocked

since that descriptor is ready for this next I/O

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

The select() Kernel Call

Allows the calling process to ask to watch multiple file descriptors at once
• The file descriptors to watch are specified by three different fd “sets”
• nfds (awkwardly) specifies the limit on which file descriptors to check

‒ nfds = highest file descriptor number across all 3 sets, plus 1
• timeval can specify a timeout after which to return early, even if no I/O is

possible yet for any the indicated file descriptors (across all 3 sets)

int select(int nfds, fd_set *_Nullable restrict readfds,
fd_set *_Nullable restrict writefds,
fd_set *_Nullable restrict exceptfds,
struct timeval *_Nullable restrict timeout);

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

The Three File Descriptor Sets
Each defines a set of fds to watch for a different type of I/O

• readfds
‒ The set of fds for the kernel to watch if they are ready for reading from
‒ Basically, if it is now possible to do a read from it without blocking

• writefds
‒ The set of fds for the kernel to watch if they are ready to write to
‒ Basically, if it is now possible to do a write to it without blocking

• exceptfds
‒ The set of fds for the kernel to watch for “exceptional” conditions
‒ Largely unused, so we’ll ignore it here

Any of the three can be NULL, meaning that set should be treated as empty set

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

The Return Values from select()
For each of the readfds, writefds, and exceptfds fd_set inputs

• Modifies each fd_set in place to remove bits for any fds that are not ready

• Leaves only the bits set for any fds that are ready for that type of I/O

• (Overwrites the three original fd_set values!)

And returns the total count of the specified fds that are ready

• That is, the total count of bits still set across the three sets

• Will return 0 if it returns due to a timeval timeout instead of any fds
becoming ready

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Why Might a read() on an fd Block?
Just a few reasons a read() from an fd might block

• Reading from a regular file never blocks
‒ Even at the end of the file

• Reading from a network connection can block if no new data has yet arrived

• Reading from a pipe (or fifo) can block if no data is currently available
‒ If all writing fds get closed, then read will not block since end of file

• Reading from a terminal might block
‒ If you haven’t yet typed ENTER then you might backspace away any input
‒ Only characters before most recent ENTER are available to be read
‒ A read from terminal may block since available input may be backspaced

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Why Might a write() on an fd Block?
Just a few reasons a write() on an fd might block

• Writing to a regular file never blocks

‒ Even if the file system (or disk) is full

• Writing to a network connection can block if output buffering is full

‒ Must be able to transmit (and with TCP, get acknowledgement) first

• Writing to a pipe (or fifo) can block if the available buffering is full

• Writing to a terminal can block if the available buffering is full

‒ A terminal is a slow device, and it might take a while for previous output to
complete and free space in output buffering

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

The Format of an fd_set
Not originally designed very well, but still usable

• A bitmask, with one bit per possible file descriptor number
‒ If the bit is set, that fd is “in” the “set”

• Stored as a constant-sized array of integers using typedef “fd_set”

• The number of bits (the size of the bitmask) is defined as FD_SETSIZE
‒ Modern Unix/Linux can have almost any number of fds per process
‒ But FD_SETSIZE can’t be enlarged without recompiling everything,

including even the C library
‒ Typical size is 1024 bits (that is, array of 32 × 32-bit integers)

• select() only looks at bits up to the “nfds” value passed (i.e., fds 0 … nfds-1)

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Manipulating an fd_set

• FD_ZERO(&my_fd_set);
‒ Changes the set my_fd_set to equal the empty set

• FD_CLR(int fd, &my_fd_set);
‒ Removes fd from the set my_fd_set

• FD_SET(int fd, &my_fd_set);
‒ Adds fd to the set my_fd_set

• FD_ISSET(int fd, &my_fd_set);
‒ Returns true/false if fd is in the set my_fd_set

fd_set my_fd_set;

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

An Example select() Call
fd_set read_set;
fd_set write_set;

FD_ZERO(&read_set);
FD_ZERO(&write_set);

FD_SET(0, &read_set);
FD_SET(7, &read_set);
FD_SET(1, &read_set);

FD_SET(4, &write_set);
FD_SET(2, &write_set);

status = select(8, &read_set, &write_set, NULL, NULL);

7

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

The Use of timeval on select()
Can ask the kernel to return after this limit even if none of the fds are ready

• timeval has fields for seconds (tv_secs) and microseconds (tv_usecs)

• If timeval == NULL
‒ select() waits forever, or until at last some specified fds are ready

• If timeval->tv_secs == 0 && timeval->tv_usecs == 0
‒ The kernel checks all of the fds for ready, then always returns immediately

• If timeval->tv_secs != 0 || timeval->tv_usecs != 0
‒ The kernel returns when any of fds are ready, or after the specified timeout
‒ Whichever occurs first

• If all of readfds, writefds, and exceptfds are NULL, timeval is still used

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

An Alternative to select(): poll()

A newer, cleaned up interface but roughly still the same
• Input is an array of “struct pollfd”

‒ Each specifies fd, events to watch for, and (on return) events that occurred
‒ No more bitsmaps or overwriting the input structs as in select()

Comparison between select() and poll()
• select() has existed for a long time and is widely available in Unix-like systems
• poll() is more recent, but it’s still been around a long time

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

A Performance Problem with select() and poll()
These work well enough for a small number of fds, but not for (very) large
• A typical select() or poll() application makes this call over and over again,

checking for new status on any of the same fds it is interested in
• But the kernel state to block the process (and know when to unbock the

process) for each of those calls must be set up “from scratch” on each call
‒ Must add the process to a separate kernel list for each of those fds

• And that kernel state is torn down on the completion of each of those calls
‒ Must remove the process from each of those separate lists in the kernel

• No state related to a series of select() or poll() calls can be retained in the
kernel (and thus reused) for each of those calls

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

epoll: More Efficient I/O Multipliexing (Linux Only)
epoll operates through 3 different kernel calls
• epoll_create()

‒ Creates a new epoll instance and returns a file descriptor for it
• epoll_ctl()

‒ Used to register interest in some fd for a given epoll instance
‒ Can add, remove, or modify settings for an fd within that instance

• epoll_wait()
‒ Waits for I/O events, blocking the calling process until then
‒ The epoll instance state is retained and reused between epoll_wait() calls
‒ And changes in fd status are tracked in the instance, ready for the next call

FreeBSD and Solaris have similar (also non-standard) facilities

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

Non-blocking I/O for a File Descriptor
read() and write() normally block the calling process
• I/O multiplexing can tell you which fds are “ready” for reading or writing

‒ Meaning it is now possible to do a read (or write) on it without blocking
• But is that enough to ensure your process never blocks on I/O, even if

multiplexing told you the fd is “ready” for that I/O?
• Usually yes, but not always, such as

‒ After an indication of ready for a write, a large write may still block
‒ After an indication of ready for a read, if you use, e.g., rio_readlineb(), it

may do an additional read(), if it hasn’t reached the newline yet
‒ An indication of ready for read only means ready then, but those available

characters might get consumed by another process before your read

• For a solid, robust server, you want to be sure blocking never occurs

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

Turning on Non-blocking Mode on an fd

Perform the operation indicated by “cmd” on the file descriptor “fd”
• Two commands are of interest here

‒ F_GETFL – gets (returns) the current flags associated with fd
‒ F_SETFL – sets the flags for the file descriptor fd to the value arg

• To enable non-blocking mode on file descriptor fd
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);

• Or, if you happen to want to turn it off for file descriptor fd
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) & ~O_NONBLOCK);

• Can also set O_NONBLOCK in the “flags” argument on open()

int fcntl(int fd, int cmd, ... /* arg */);

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

The Effect of Non-blocking Mode on I/O
Any I/O call on a non-blocking file descriptor will never block
• Any I/O call will still complete normally, if it can
• But if it would instead have to block

‒ It will return -1, with errno set to EAGAIN or EWOULDBLOCK
• You can also now use this to handle I/O more efficiently

‒ After multiplexing tells you the fd is ready for reading (or writing)
‒ You can loop to read all available data (or to write everything you want to)
‒ But the loop stops harmlessly on -1 and EWOULDBLOCK, if it needs to
‒ Then you wait for multiplexing to tell you again to read (or write)
‒ Handles I/O with fewer kernel calls, since you might get to handle

multiple reads or writes without doing the I/O multiplexing call for each

19

20

