Introduction to Networking

COMP 321

Dave Johnson

COMP 321

Copyright © 2026 David B. Johnson Page 1

Background: Networking Layers (ISO Model)

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

COMP 321

The actual application programs that are communicating
Handling data representation issues

Managing related transport layer connections

Addressing from and to individual processes on source and
destination computer, reliability issues

Routing: sending “packets” (through “routers”) to even
not directly connected computers

Framing: sending “frames” from one computer to another
directly connected computer

Wires, connectors, voltages, etc., sending bits to a directly
connected computer

Copyright © 2026 David B. Johnson Page 2

Background: A Small Internet Example

Host Host | - | Host Host Host | .- | Host
LAN LAN
Router Router
WAN
Router
LAN The Internet is a

“network of networks”

Host Host | ** | Host

COMP 321 Copyright © 2026 David B. Johnson Page 3

Client-Server Communication

Most networking communication is clients requesting services from servers

* Client — A computer (or program on some computer), requests some service
—Sends a request for the service to some server that provides that service
— Typically waits for a reply (response) from the server

* Server — A computer (or program on some computer), provides some service
— Receives requests from clients, operates on request, and replies to client
— Examples: web server, ssh server (sshd), echo server
— Usually runs “forever”, handling requests from any number of clients

4. client : 1. client sends request 2. server
Client » Server
handles 5 5 operates
rocess |« rocess
response 3. responds to request on request

COMP 321 Copyright © 2026 David B. Johnson Page 4

Organization of an Internet Application

Client Computer Server Computer
L i 1 P = ———— 1
| Client : User | Server :
Sockets | Program ! Code ; Program I
7Y 7Y 1
Interface ---1 + i -
(kernel calls) 1 * I K | ! * |
! TCP/IP ! Cec:;'g ! TCP/IP |
Hardware 1 7y " I y "
Interface ---1 + 1 +
. \ 4 1 \ 4 1
(interrupts) | Network ! Hardware ! Network !
! Adapter 1 and Firmware ! Adapter I
| |

The Internet

COMP 321 Copyright © 2026 David B. Johnson Page 5

Evolution of the Internet

The ARPANET (Advanced Research Projects Agency Network) starting in 1966
* |nitiated by U.S. Government research agency to enable “resource sharing”
* Connected some universities and other government contractors

The original protocols were not “TCP/IP”

* Conceptually similar to today’s IP (network layer) and TCP (transport layer)
together in one protocol

* Called NCP (Network Control Program) (before the word “protocol” was used)

* Designed originally only for communicating directly over the ARPANET,
running on the ARPANET physical layer and data link layer

* Beginning in 1973, IP designed as a replacement to connect other networks
together (originally called “concatenating” networks, thus the “Catenet”)

COMP 321 Copyright © 2026 David B. Johnson Page 6

The First Official Internet — Connected By TCP/IP

SAN FRANCISCO BAY AREA
PACKET RADIO NET

ARPANET
BOLT BERANEK AND NEWMAN
g CAMBRIDGE, MASSACHUSETTS}
(&) F (\L R NORWEGIAN DEF ENSE
" RESEARCH ESTABLISHMENT
o e = Y., KIELLER, NORWAY
haDI0 weT P a
EARTH STATION " m‘rlo”
L

\ (D] 6 frememmfme{(8) (™)

INTELSAT

SRi \
MENLO PARK, sA1 TR V-A

CALIFORNIA VAN i e }.
! N L0] A public demonstration
o l Gaon;:;t:::“ i TANUM. SWEDEN ',! p
(R) ackeT RADIO REPEATER A EARTH STATION QARTH STATION ,‘f of a 3-network TC P/l p
Q e N\ umes” {0 Rt
@ SATELUITE IMP wwe&:o:?:umumm iy
T JETWORK GATEWAY
= R e o soumens cauromn November 27, 1977
THTENNETIORK NATEWAY MARINA DEL MEY. CALIFORMIA

- FATH OF PAGKRTX

Page 7

Evolution of the Internet

Today’s commonly used IP is IP Version 4 (IPv4)
* In the late 1980’s and early 1990’s, becoming clear IPv4 had limitations
— Chief among them was that it was running out of unique host IP addresses

* IPng (“IP next generation”) effort started to design a successor for IPv4, with
many proposals

—SIP: Simple Internet Protocol
—PIP: “P” Internet Protocol
—TUBA: TCP and UDP over Big Addresses
— CATNIP: Common Architecture Technology for the Next generation IP
—SIPP: Simple Internet Protocol “Plus”

* SIPP selected as the “winner” and renamed IP Version 6 (IPv6), January 1995
— First official protocol specification published in December 1995

COMP 321 Copyright © 2026 David B. Johnson Page 8

IPv6 Global Adoption as Measured by Google

50.00%

45.00% Almost 50% of requests to google.com
40.00% come in to Google over IPv6!

35.00%

30.00%

January 18, 2026: 48.08%

25.00%
20.00%
15.00%
10.00%

5.00%
https://www.google.com/intl/en/ipv6/statistics.html

0.00%

2010 N) 2020

COMP 321 Copyright © 2026 David B. Johnson Page 9

TCP vs. UDP

The Internet uses two common transport layer protocols

Transmission Control Protocol (TCP)

* Used for “most” communication

* Provides a bi-directional reliable stream of bytes (carried by IP packets)
* Guarantees no loss, duplication, errors, etc.

* Addresses individual sender and receiver processes

User Datagram Protocol (UDP)

* Provides roughly the same service as IP packets, no guarantees of reliability
* A bi-directional “best effort” datagram service

* Addresses individual sender and receiver processes

COMP 321 Copyright © 2026 David B. Johnson Page 10

10

Internet Host Addressing

IP Version 4 (IPv4)
* Each computer has one (or more) IPv4 addresses
— 32-bit number, consisting (roughly) of a network number and host number
— Commonly written with the 4 bytes in “dotted decimal” notation
128.42.124.180

IP Version 6 (IPv6)

* Conceptually, roughly the same basic addressing architecture as in IPv4
— But now 128 bits rather than 32 bits
— Commonly written in 8 hex chunks of 16 bits (4 hex digits) each

fe80:0000:0000:0000:164¢:5887:c02c:f6a2
fe80::164c:5887:c02c:f6a2

COMP 321 Copyright © 2026 David B. Johnson Page 11

11

TCP and UDP Port Numbers

Both use the same scheme for port numbers to identify endpoints
* A nonzero unsigned 16-bit integer
* This combination must be unique:
—source IP address, source port number,
— destination IP address, destination port number,
—and protocol (TCP or UDP)
* Can specify your own port numbers, or they generally can be filled in for you
* Port numbers less than 1024 are reserved for “well known” services
— Examples: TCP port 80 reserved for web servers, 443 for secure web (https)
* The kernel keeps track of which local process has any given port number open

COMP 321 Copyright © 2026 David B. Johnson Page 12

12

Internet Host Naming

Hierarchically assigned and managed through the Domain Name System
* A very large replicated, distributed database system and query protocol

* Example: Looking up the IP address for “www.rice.edu”
— Ask for it from any server for the (unnamed) root of zone
— It replies, “don’t ask me, ask any of these servers for the .edu zone”
— Ask one of those .edu servers for the “www.rice.edu” IP address
— It replies, “don’t ask me, ask any of these servers for the .rice.edu zone”
— Ask one of those .rice.edu servers for the “www.rice.edu” IP address
— It replies with the answer IP address for “www.rice.edu”

* Caching means this full lookup process is usually bypassed or short circuited

COMP 321 Copyright © 2026 David B. Johnson Page 13

13

.
The Domain Name System
o
/= A
- ~I
_—
N - ’ -
// 3 Vs -..__: ——==: L
4= \) TN Faie v BN fr= \
P A I = P B /! e ~\ i
/ = L 1 T N, I o \, 1|z= h"
/ - A v =]] I firi=s \\ i \\ \ \
/ Vo / I | N\ \
7 VoS- | L \ L \
\ I A v \
! 1 v v \
I \ ’ (WA \ o\ \
] 1 ! v VoA \
! Vo~ ! \ Y [\
= 1
| = ; V\Il_f\‘.r"-\\ = B9 ey Ll R=1 \ [= R 1
VR = |I. VE T LE| B ElEY Bl B B \E| El 2
VR = MHM ,,1:: J, _ = =) = ; |‘ ~— ml \\u ’1
\\ F it —— N\, / N 1 \\. .-"
-~ L i o) ~ J/ ~o J L —
SR o '|‘ i T - N————— -
o |
F o Image: Wikipedia
G?’ NS RR ("resource record")
& names the nameserver _
S authoritative for B resource records
ég-v delegated subzone ~. | = associated with name
uv Ao~
Y sl
- —
,/ |\ "delegated subzone" I N zone of authority,
7 = ‘ AN) { \ = managed by a name server
! \ b When a system administrator i _,-'
! A wants to let another administrator =
] o FE \ manage a part of a zone, the first
" o A : administrator's nameserver delegates see also: RFC 1034 4.2:
L= . Patofthcsohe another How the database is divided into zones.
COMP321 M __ s NAmesEver Page 14

14

Byte Ordering: Big-Endian vs. Little-Endian

Naming comes from “Gulliver’s Travels”, Jonathan Swift (Lemuel Gulliver), 1726

“It is allowed on all hands, that the primitive way of breaking eggs before we
eat them, was upon the larger end: but his present Majesty's grandfather, while
he was a boy, going to eat an egg, and breaking it according to the ancient
practice, happened to cut one of his fingers. Whereupon the Emperor his father
published an edict, commanding all his
subjects, upon great penalties, to break the
smaller end of their eggs. The people so
highly resented this law, that our histories
tell us there have been six rebellions raised
on that account; wherein one Emperor lost
his life, and another his crown. ...

COMP 321 Copyright © 2026 David B. Johnson Page 15

15

Byte Ordering: Big-Endian vs. Little-Endian

“On Holy Wars and a Plea for Peace,” Danny Cohen, IEN 137, April 1, 1980

“It may be interesting to notice that the point which Jonathan Swift tried to
convey in Gulliver's Travels in exactly the opposite of the point of this note.

“Swift's point is that the difference between breaking the egg at the little-end
and breaking it at the big-end is trivial. Therefore, he suggests, that everyone
does it in his own preferred way.

“We agree that the difference between sending eggs with the little- or the big-
end first is trivial, but we insist that everyone must do it in the same way, to
avoid anarchy. Since the difference is trivial we may choose either way, but a
decision must be made.”

COMP 321 Copyright © 2026 David B. Johnson Page 16

16

Byte Ordering: Big-Endian vs. Little-Endian

Applies to any multi-byte integer value, such as here a 32-bit integer
* Consider the decimal value 305,419,896 =0x12345678

Big-Endian Byte Order Little-Endian Byte Order
12 34 56 78 78 56 34 12
50 51 52 53 50 51 52 53

byte addresses byte addresses

* Many different computer architectures have used big-endian ordering and
many others have used little-endian ordering

* The Intel architecture uses little-endian byte ordering
* The Internet protocols use big-endian byte ordering

COMP 321 Copyright © 2026 David B. Johnson Page 17

17

Converting Byte Ordering

uint32_t htonl(uint32_t hostlong);
uintl6_t htons(uintl6_t hostshort);

uint32_t ntohl(uint32_t netlong);
uintl6_t ntohs(uintl6_t netshort);

Converts host (h) to network (n) byte order, or network (n) to host (h) order
* These functions know the hardware byte order being used by this computer
* These functions know that network byte order is always big-endian

* If these happen to be the same ordering, then the function does nothing

* Otherwise, they return the converted result

COMP 321 Copyright © 2026 David B. Johnson Page 18

18

Converting To/From Printable IP Addresses

const char *inet_ntop(AF_INET, const void *restrict src,
char dst[restrict .size], socklen_t size);
int inet_pton(AF_INET, const char *restrict src, void *restrict dst);

Converts “network” (n) to “presentation” (p) IP address format or the reverse

* The “network” format of an IP address is the 32-bit integer
(in network byte order)

* The “presentation” format here is a character string like “128.42.124.180”
* The AF_INET means we are using IPv4 addresses (“address family Internet”)
* inet_ntop returns char *dst on success, NULL on error

* inet_pton returns 1 on success, 0 if not valid format, -1 if address family
unknown

COMP 321 Copyright © 2026 David B. Johnson Page 19
19
Looking up IP Addresses
int getaddrinfo(const char *restrict node, const char *restrict service,
const struct addrinfo *restrict hints, struct addrinfo **restrict res);
void freeaddrinfo(struct addrinfo *res);
const char *gai_strerror(int errcode);
Query the DNS using a hostname or IP address specified by “node”
* You pass in the address of a “struct addrinfo *” as res
* Lookup fills in the pointer at address res with a pointer to a linked list of
results, each as a “struct addrinfo”
—And returns a getaddrinfo-specific error code for any errors
— Calling gai_strerror will give you a string explanation of that error code
* You must later call freeaddrinfo to free the memory in that linked list!
COMP 321 Copyright © 2026 David B. Johnson Page 20
20

10

Calling getaddrinfo()

Suppose you want to open a TCP connection using a numeric port number
* Initialize things and make the actual getaddrinfo call

char *hostname, *port; The port is like “1234”
H E3 .
struct addrinfo *results; T Tl s e s

struct addrinfo hints; addresses depending on own
memset(&hints, 0, sizeof(hints)); config

hints.ai_socktype = SOCK_STREAM,;
hints.flags = AL NUMERICSERV | Al_ADDRCONFIG;
error = getaddrinfo(hostname, port, &hints, &results);

* “results” now points to beginning of a linked list of results ...
* Must eventually free the memory in this linked list using
freeaddrinfo(results);

COMP 321 Copyright © 2026 David B. Johnson Page 21

21

The Sockets API

Provides the programming interface for network applications

* Created in the early 1980’s as part of the original Berkeley BSD distribution of
Unix that contained an early implementation of TCP/IP protocols

* Based on the client/server network model

What is a socket?
* To the kernel, a socket is an endpoint of network communication

* To a user program, a socket is a type of file descriptor that lets the program
read from and write to the network

* Clients and servers communicate with each through socket file descriptor 1/0

* The main distinction from “regular” file descriptors and socket file descriptors
is how the program “opens” the socket file descriptor

COMP 321 Copyright © 2026 David B. Johnson Page 22

22

11

Overview of the Sockets Interface

Client Server
| socket() | | socket() |
v
| bind() |
v
Connection | I|st$n() |
Y request
| connect() bommmmmmmm - > accept() o=
v v
| rio_writen() - —{ rio_readlineb() |
Await connection
| rio_readlineb() [« { rio_writen() | request from
¥ EOF ¥ the next client
| close() F----------- » rio_readlineb() |
v
| close() —
COMP 321 Copyright © 2026 David B. Johnson Page 23
23
Listening vs. Connected Socket Descriptors
The return from listen() gives you a “listening” socket file descriptor
* Represents the server process waiting for incoming connection requests
— Listening at the address and port number from the bind() call
* Remembers up to limited number of new requests until the server gets to them
* Normally, created once by the server and reused as each new connection
request comes in (as long as this server is willing to accept new connections)
The return from accept() gives you a new “connected” socket file descriptor
* Each return from accept() on listening socket represents a new connection,
giving a new connected socket file descriptor for talking with that new client
* Separate listening socket remains, listening for new connections from clients
* Server closes each new connected socket when done with that particular client
COMP 321 Copyright © 2026 David B. Johnson Page 24
24

12

Creating a Socket (Client and Server)

int socket(int domain, int type, int protocol);

Creates a new socket, but not “open” yet to anything
* To create a socket for TCP communication, use

int socket(AF_INET, SOCK_STREAM, 0);
* To create a socket for UDP communication, use

int socket(AF_INET, SOCK_DGRAM, 0);

* The “protocol” field is generally unused (thus, 0), since there is only a single
AF_INET protocol for SOCK_STREAM or for SOCK_DGRAM

COMP 321 Copyright © 2026 David B. Johnson Page 25

25
The Client Connecting to the Server
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
Does not return to the client until connected to the server (or error)
* Must have already used socket() to create the socket this will then connect
* addr points to a struct sockaddr that specifies, e.g., the IP address and port
number for the client to connect to
— “struct sockaddr” is the “generic” address structure
—The IPv4-specific version is a “struct sockaddr_in”
COMP 321 Copyright © 2026 David B. Johnson Page 26
26

13

Binding the Server Socket for What to Listen To

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

Needs a socket previously created by the server by calling socket()

* addr points to a struct sockaddr that specifies, e.g., the IP address and port
number to listen for new connections to

- “struct sockaddr” is the “generic” address structure
—The IPv4-specific version is a “struct sockaddr_in”

COMP 321 Copyright © 2026 David B. Johnson Page 27

27

Setting up the Server to Wait for New Connections

int listen(int sockfd, int backlog);

Sets up this socket as a “listening” socket that can wait for new connections
* Should have already used bind() to specify which connections to listen for
* Tells the kernel to listen for new connections to this socket

—The kernel will remember up to “backlog” number of pending
connections, if they come in before the server process gets a chance
to accept each

COMP 321 Copyright © 2026 David B. Johnson Page 28

28

14

Waiting at the Server for the Next Connection

int accept(int sockfd, struct sockaddr * Nullable restrict addr,
socklen_t * Nullable restrict addrlen);

Does not return until the next client tries to connect

* Should have already used bind() to specify which connections to listen for

* Should have already used listen() to tell the kernel to listen for connections
* Returns a new “connected” file descriptor representing the new connection

—And the “listening” file descriptor is still there, listening for additional new
connections — Thus now both a listening and a separate connected socket

— Each call to accept() gives the server one of the pending new connections,
giving you a new connected socket and leaving the separate listening socket
still listening for more connections

COMP 321 Copyright © 2026 David B. Johnson Page 29

29

15

