/O Multiplexing and
Non-blocking 1/0

COMP 321

Dave Johnson

COMP 321 Copyright © 2026 David B. Johnson Page 1

read() and write() Normally Block the Process
Consider, for example, the following typical code

while ((nch = read(STDIN_FILENO, buffer, BUFFER_SIZE)) > 0)
write(STDOUT_FILENO, buffer, nch);

* Each read() call “blocks” and doesn’t return until it completes
* Each write() call then “blocks” and doesn’t return until it completes

* This may be fine in simple cases like the above

But what if you want or need to read/write multiple files “at once” ?

COMP 321 Copyright © 2026 David B. Johnson Page 2

Why Might a read() on an fd Block?

Just a few reasons a read() from an fd might block

* Reading from a regular file never blocks
— Even at the end of the file
* Reading from a network connection can block if no new data has yet arrived
* Reading from a pipe (or fifo) can block if no data is currently available
—If all writing fds get closed, then read will not block since end of file
* Reading from a terminal might block
—If you haven’t yet typed ENTER then you might backspace away any input
—Only characters before most recent ENTER are available to be read
— A read from terminal may block since available input may be backspaced

COMP 321 Copyright © 2026 David B. Johnson Page 3

Why Might a write() on an fd Block?

Just a few reasons a write() on an fd might block

* Writing to a regular file never blocks
— Even if the file system (or disk) is full
* Writing to a network connection can block if output buffering is full
—Must be able to transmit (and with TCP, get acknowledgement) first
* Writing to a pipe (or fifo) can block if the available buffering is full
* Writing to a terminal can block if the available buffering is full

— A terminal is a slow device, and it might take a while for previous output to
complete and free space in output buffering

COMP 321 Copyright © 2026 David B. Johnson Page 4

A Simple Example of Many read/write at Once

Consider something like the “ssh” command

* Read from the keyboard and write to the network connection to the computer
you are ssh’d into

* Read from the network connection from the computer you are ssh’d into and
write to the screen

* How can the ssh program do all of this (both directions) at once?

* And what about also reading from the mouse and writing to the network?

keyboard ———» —

ssh command network
screen €¢——— —

COMP 321 Copyright © 2026 David B. Johnson Page 5

Another Example

Consider a large, very busy web server

* The web server reads/writes with one web browser client

* While it also reads/writes with another web browser client

* And with another web browser client, etc., for many clients, all at once

many more clients

client 2 I I I o client 4

clientl] «—» web server €«—» client 3

COMP 321 Copyright © 2026 David B. Johnson Page 6

A Solution: 1/0 Multiplexing

The basic idea
* Build a list of all the file descriptors we want to do this kind of /0 on “at once”
* Repeatin a loop

— Give this list of file descriptors to the kernel

—The kernel blocks this process until at least any one of those descriptors is
“ready” for next |/O operation (e.g., a read() or a write())

oExample: you typed something on the keyboard
oExample: the network is ready for the next data you want to send
—The process performs the read or write for each descriptors indicated ready
o For each of those reads or writes, the process shouldn’t need to be
blocked since that descriptor is ready for this next 1/0

COMP 321 Copyright © 2026 David B. Johnson Page 7

The select() Kernel Call

int select(int nfds,
fd_set *_Nullable restrict readfds,
fd_set *_Nullable restrict writefds,
fd_set *_Nullable restrict exceptfds,
struct timeval *_Nullable restrict timeout);

Allows the calling process to ask to watch multiple file descriptors at once

* The file descriptors to watch are specified by three different fd “sets”

* nfds (awkwardly) specifies the limit on which file descriptors to check
—nfds = highest file descriptor number across all 3 sets, plus 1

* timeval can specify a timeout after which to return early, even if no 1/0O is
possible yet for any the indicated file descriptors (across all 3 sets)

COMP 321 Copyright © 2026 David B. Johnson Page 8

The Three File Descriptor Sets

Each defines a set of fds to watch for a different type of I/0

* readfds
—The set of fds for the kernel to watch if they are ready for reading from
— Basically, if it is now possible to do a read from it without blocking
* writefds
—The set of fds for the kernel to watch if they are ready to write to
— Basically, if it is now possible to do a write to it without blocking
* exceptfds
—The set of fds for the kernel to watch for “exceptional” conditions
— Largely unused, so we’ll generally ignore it here

Any of the three can be NULL, meaning that set should be treated as empty set

COMP 321 Copyright © 2026 David B. Johnson Page 9

Manipulating an fd_set

Declares my_fd_set
variable as a set of
file descriptors

fd_set my_fd_set;

* FD_ZERO(&my_fd_set);
—Initializes the set my_fd_set equal to the empty set

* FD_CLR(int fd, &my_fd_set);

— Removes fd from the set my_fd_set
* FD_SET(int fd, &my_fd_set);

— Adds fd to the set my_fd_set

* FD_ISSET(int fd, &my_fd_set);
—Returns true/false if fd is in the set my_fd_set

COMP 321 Copyright © 2026 David B. Johnson Page 10

10

The Internal Format of an fd_set

A bitmask, with one bit per possible file descriptor number

* Stored as a constant-sized array of integers, using typedef “fd_set”

—If a bit is set in the bitmask, that corresponding fd is “in” the “set”

fdo fd1 fd2 fd3 fd4 fd5 fd6 ...

readfds |1 |1 (0| 0| 0|1 ignored ...

writefdls | 0 | 1 | 1| 1|10 ignored ...

exceptfds |1 | 0| 1|0 | 0|0 ignored ...
—nfds =6 — only 6 bits are used; bits after bit 5 are ignored by select()

You should use only the FD_ macros — do not directly access the bits

COMP 321

Copyright © 2026 David B. Johnson Page 11

11

An Example select() Call

fd_set rea?d_set; nfds should be the maximum fd
fd_set write_set; number set across all of the sets
FD_ZERO(&read_ set); on this select() call
FD_ZERO(&write_set); plus 1, since file descriptor numbers
FD_SET(0, &read._set); begin at 0, notat 1
FD_SET(7, &read_set);

FD_SET(1, &read_set);

FD_SET(4, &write_set);

FD_SET(2, &write_set);

nfds = 8;

status = select(nfds, &read_set, &write_set, NULL, NULL);

COMP 321

Copyright © 2026 David B. Johnson Page 12

12

The Return Values from select()

For each of the readfds, writefds, and exceptfds fd_set inputs
* Modifies each fd_set in place to remove bits for any fds that are not ready
* Leaves only the bits set for any fds that are ready for that type of 1/0

* (Overwrites the three original fd_set values!)

And returns the total count of the specified fds that are ready
* That is, the total count of bits still set, total across the three sets

* Will return 0 if it returns due to a timeval timeout instead of any fds
becoming ready

COMP 321 Copyright © 2026 David B. Johnson Page 13

13

Simple Handling of fds on Return from select()
status = select(nfds, &read _set, &write_set, NULL, NULL);

if (status >0 {
for (i = 0; i < nfds; i++) {
if (FD_ISSET(i, &read_set)) {
/* do read() on file descriptor number i */

}
if (FD_ISSET(i, &write_set)) {
/* do write() on file descriptor numberi */

}

COMP 321 Copyright © 2026 David B. Johnson Page 14

14

The Use of timeval on select()

Can ask the kernel to return after this limit even if none of the fds are ready
* timeval struct has fields for seconds (tv_secs) and microseconds (tv_usecs)
* If timeval pointer == NULL
—select() waits forever, or until at last some specified fds are ready
* If timeval->tv_secs == 0 && timeval->tv_usecs ==
—The kernel checks all of the fds for ready, then always returns immediately
* If timeval->tv_secs =0 || timeval->tv_usecs !=0

—The kernel returns when any of fds are ready or after the specified timeout
— Whichever occurs first

* If all of readfds, writefds, and exceptfds are NULL, timeval is still used

COMP 321 Copyright © 2026 David B. Johnson Page 15

15

An Alternative to select(): poll()

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

A newer, cleaned up interface but roughly still the same

* Input is an array of “struct pollfd”
— Each specifies fd, events to watch for, and (on return) events that occurred
— No more bitmaps or overwriting the input sets as in select()

Comparison between select() and poll()

* select() has existed for a long time and is widely available in Unix-like systems
* poll() is more recent, but it’s still been around a long time

* select() seems to be much more commonly used

COMP 321 Copyright © 2026 David B. Johnson Page 16

16

A Performance Problem with select() and poli()

They work well enough for a small number of fds, but not for (very) large

* A typical select() or poll() application makes this call over and over again,
looping, checking for new status on any of the same fds it is interested in

* But the kernel state to block the process (and know when to unbock the
process) for each of those calls must be set up “from scratch” on each call

— Must add the process to a separate kernel list for each of those fds
* And that kernel state is torn down on the completion of each of those calls
— Must remove the process from each of those separate lists in the kernel

* No state related to a series of select() or poll() calls can be retained in the
kernel (and thus reused) for each of these calls

COMP 321 Copyright © 2026 David B. Johnson Page 17

17

epoll: More Efficient I/O Multipliexing (Linux Only)

epoll operates through 3 separate kernel calls
* epoll_create()
— Creates a new epoll instance and returns a file descriptor for it
* epoll_ctl() (“control”)
— Used to register interest in some fd for a given epoll instance
—Can add, remove, or modify settings for an fd within that instance
* epoll_wait()
— Waits for I/0O events, blocking the calling process until then
—The epoll instance state is retained and reused between epoll_wait() calls
— And changes in fd status are tracked in the instance, ready for the next call

FreeBSD and Solaris have similar (also non-standard) facilities

COMP 321 Copyright © 2026 David B. Johnson Page 18

18

Non-blocking 1/O for a File Descriptor

read() and write() normally block the calling process
* |/0 multiplexing can tell you which fds are “ready” for reading or writing
— Meaning it is now possible to do a read (or write) on it without blocking

* But is that enough to ensure your process never blocks on 1/0, even if
multiplexing told you the fd is “ready” for that I/0?

* Usually yes, but not always, such as
— After an indication of ready for a write, a large write may still block

— After an indication of ready for a read, if you use, e.g., rio_readlineb(), it
may do an additional read(), if it hasn’t reached the newline yet

— An indication of ready for read only means ready then, but those available
characters might get consumed by another process before your read

* For a solid, robust server, you want to be sure blocking never occurs

COMP 321 Copyright © 2026 David B. Johnson Page 19

19

Turning Non-blocking Mode On/Off on an fd

int fentl(int fd, intcmd, ... /* arg */);

A generic interface: do operation indicated by “cmd” on the file descriptor “fd”
* Two fcntl commands are of interest here
—F_GETFL — gets (and returns) the current flags associated with fd
—F_SETFL - sets the flags for the file descriptor fd to the value arg
* To enable non-blocking mode on file descriptor fd
fentl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);
* Or, if you happen to want to turn it off for file descriptor fd
fentl(fd, F_SETFL, fcntl(fd, F_GETFL) & ~O_NONBLOCK);
* Can also set O_NONBLOCK in the “flags” argument on open()

COMP 321 Copyright © 2026 David B. Johnson Page 20

20

10

The Effect of Non-blocking Mode on 1/0

Any 1/0 call on a non-blocking file descriptor will never block
* Any I/0O call will still complete normally, if it can
* But if it would instead have to block

—read()/write() will return -1, with errno = EAGAIN or EWOULDBLOCK
(different systems use one of these two errno codes)

Saves your application (e.g., server) from blocking, but then what?

* If the I/O on that fd would have blocked, the return from read()/write() is now
instead immediate, with errno set

* But how do you know when to try reading/writing that fd again next
—You shouldn’t just keep retrying immediately in a loop
— Periodic retries with delays is still wasteful and may wait longer than needed

COMP 321 Copyright © 2026 David B. Johnson Page 21

21

Using Multiplexing and Non-Blocking I/O Together

Can use together to handle 1/0 more efficiently

After multiplexing tells you the fd is ready for reading (or writing)

* Then loop doing reads for all available data (or to write everything you want)
* And the loop stops harmlessly on -1 and EAGAIN/EWOULDBLOCK if needed

* Then you wait for multiplexing to tell you again to read (or write)

Handles I/0 with fewer kernel calls, since you might get to do multiple reads or
writes without doing the I/0 multiplexing call before each individual 1/0

* Instead of multiplex, read; multiplex, read; multiplex, read; multiplex, read; ...

* Do multiplex, read, read, read, ...; multiplex, read, read, ..., multiplex, ...
(getting all pending data after each multiplex instead of just next single chunk)

COMP 321 Copyright © 2026 David B. Johnson Page 22

22

11

