
1

Copyright © 2026 David B. JohnsonCOMP 321 Page 1

I/O Multiplexing and
Non-blocking I/O

COMP 321

Dave Johnson

Copyright © 2026 David B. JohnsonCOMP 321 Page 2

read() and write() Normally Block the Process
Consider, for example, the following typical code

while ((nch = read(STDIN_FILENO, buffer, BUFFER_SIZE)) > 0)
write(STDOUT_FILENO, buffer, nch);

• Each read() call “blocks” and doesn’t return until it completes

• Each write() call then “blocks” and doesn’t return until it completes

• This may be fine in simple cases like the above

But what if you want or need to read/write multiple files “at once” ?

1

2

2

Copyright © 2026 David B. JohnsonCOMP 321 Page 3

Why Might a read() on an fd Block?
Just a few reasons a read() from an fd might block

• Reading from a regular file never blocks
‒ Even at the end of the file

• Reading from a network connection can block if no new data has yet arrived

• Reading from a pipe (or fifo) can block if no data is currently available
‒ If all writing fds get closed, then read will not block since end of file

• Reading from a terminal might block
‒ If you haven’t yet typed ENTER then you might backspace away any input
‒ Only characters before most recent ENTER are available to be read
‒ A read from terminal may block since available input may be backspaced

Copyright © 2026 David B. JohnsonCOMP 321 Page 4

Why Might a write() on an fd Block?
Just a few reasons a write() on an fd might block

• Writing to a regular file never blocks

‒ Even if the file system (or disk) is full

• Writing to a network connection can block if output buffering is full

‒ Must be able to transmit (and with TCP, get acknowledgement) first

• Writing to a pipe (or fifo) can block if the available buffering is full

• Writing to a terminal can block if the available buffering is full

‒ A terminal is a slow device, and it might take a while for previous output to
complete and free space in output buffering

3

4

3

Copyright © 2026 David B. JohnsonCOMP 321 Page 5

A Simple Example of Many read/write at Once
Consider something like the “ssh” command
• Read from the keyboard and write to the network connection to the computer

you are ssh’d into
• Read from the network connection from the computer you are ssh’d into and

write to the screen
• How can the ssh program do all of this (both directions) at once?

• And what about also reading from the mouse and writing to the network?

ssh command
keyboard

screen
network

Copyright © 2026 David B. JohnsonCOMP 321 Page 6

Another Example
Consider a large, very busy web server
• The web server reads/writes with one web browser client
• While it also reads/writes with another web browser client
• And with another web browser client, etc., for many clients, all at once

web serverclient 1

client 2

client 3

client 4

many more clients

.

5

6

4

Copyright © 2026 David B. JohnsonCOMP 321 Page 7

A Solution: I/O Multiplexing
The basic idea
• Build a list of all the file descriptors we want to do this kind of I/O on “at once”
• Repeat in a loop

‒ Give this list of file descriptors to the kernel
‒ The kernel blocks this process until at least any one of those descriptors is

“ready” for next I/O operation (e.g., a read() or a write())
oExample: you typed something on the keyboard
oExample: the network is ready for the next data you want to send

‒ The process performs the read or write for each descriptors indicated ready
oFor each of those reads or writes, the process shouldn’t need to be

blocked since that descriptor is ready for this next I/O

Copyright © 2026 David B. JohnsonCOMP 321 Page 8

The select() Kernel Call

Allows the calling process to ask to watch multiple file descriptors at once
• The file descriptors to watch are specified by three different fd “sets”
• nfds (awkwardly) specifies the limit on which file descriptors to check

‒ nfds = highest file descriptor number across all 3 sets, plus 1
• timeval can specify a timeout after which to return early, even if no I/O is

possible yet for any the indicated file descriptors (across all 3 sets)

int select(int nfds,
fd_set *_Nullable restrict readfds,
fd_set *_Nullable restrict writefds,
fd_set *_Nullable restrict exceptfds,
struct timeval *_Nullable restrict timeout);

7

8

5

Copyright © 2026 David B. JohnsonCOMP 321 Page 9

The Three File Descriptor Sets
Each defines a set of fds to watch for a different type of I/O

• readfds
‒ The set of fds for the kernel to watch if they are ready for reading from
‒ Basically, if it is now possible to do a read from it without blocking

• writefds
‒ The set of fds for the kernel to watch if they are ready to write to
‒ Basically, if it is now possible to do a write to it without blocking

• exceptfds
‒ The set of fds for the kernel to watch for “exceptional” conditions
‒ Largely unused, so we’ll generally ignore it here

Any of the three can be NULL, meaning that set should be treated as empty set

Copyright © 2026 David B. JohnsonCOMP 321 Page 10

Manipulating an fd_set

• FD_ZERO(&my_fd_set);
‒ Initializes the set my_fd_set equal to the empty set

• FD_CLR(int fd, &my_fd_set);
‒ Removes fd from the set my_fd_set

• FD_SET(int fd, &my_fd_set);
‒ Adds fd to the set my_fd_set

• FD_ISSET(int fd, &my_fd_set);
‒ Returns true/false if fd is in the set my_fd_set

fd_set my_fd_set; Declares my_fd_set
variable as a set of

file descriptors

9

10

6

Copyright © 2026 David B. JohnsonCOMP 321 Page 11

A bitmask, with one bit per possible file descriptor number

• Stored as a constant-sized array of integers, using typedef “fd_set”
‒ If a bit is set in the bitmask, that corresponding fd is “in” the “set”

‒ nfds = 6 – only 6 bits are used; bits after bit 5 are ignored by select()

You should use only the FD_ macros – do not directly access the bits

The Internal Format of an fd_set

fd 5fd 4fd 3fd 2fd 1fd 0

100011

011110

000101

readfds

writefds

exceptfds

ignored . . .

ignored . . .

ignored . . .

fd 6 . . .

Copyright © 2026 David B. JohnsonCOMP 321 Page 12

An Example select() Call
fd_set read_set;
fd_set write_set;

FD_ZERO(&read_set);
FD_ZERO(&write_set);

FD_SET(0, &read_set);
FD_SET(7, &read_set);
FD_SET(1, &read_set);

FD_SET(4, &write_set);
FD_SET(2, &write_set);

nfds = 8;
status = select(nfds, &read_set, &write_set, NULL, NULL);

7

nfds should be the maximum fd
number set across all of the sets

on this select() call

plus 1, since file descriptor numbers
begin at 0, not at 1

11

12

7

Copyright © 2026 David B. JohnsonCOMP 321 Page 13

The Return Values from select()
For each of the readfds, writefds, and exceptfds fd_set inputs

• Modifies each fd_set in place to remove bits for any fds that are not ready

• Leaves only the bits set for any fds that are ready for that type of I/O

• (Overwrites the three original fd_set values!)

And returns the total count of the specified fds that are ready

• That is, the total count of bits still set, total across the three sets

• Will return 0 if it returns due to a timeval timeout instead of any fds
becoming ready

Copyright © 2026 David B. JohnsonCOMP 321 Page 14

Simple Handling of fds on Return from select()
status = select(nfds, &read_set, &write_set, NULL, NULL);

if (status > 0 {
for (i = 0; i < nfds; i++) {

if (FD_ISSET(i, &read_set)) {
/* do read() on file descriptor number i */
. . .

}
if (FD_ISSET(i, &write_set)) {

/* do write() on file descriptor number i */
. . .

}
}

}

13

14

8

Copyright © 2026 David B. JohnsonCOMP 321 Page 15

The Use of timeval on select()
Can ask the kernel to return after this limit even if none of the fds are ready

• timeval struct has fields for seconds (tv_secs) and microseconds (tv_usecs)

• If timeval pointer == NULL
‒ select() waits forever, or until at last some specified fds are ready

• If timeval->tv_secs == 0 && timeval->tv_usecs == 0
‒ The kernel checks all of the fds for ready, then always returns immediately

• If timeval->tv_secs != 0 || timeval->tv_usecs != 0
‒ The kernel returns when any of fds are ready or after the specified timeout
‒ Whichever occurs first

• If all of readfds, writefds, and exceptfds are NULL, timeval is still used

Copyright © 2026 David B. JohnsonCOMP 321 Page 16

An Alternative to select(): poll()

A newer, cleaned up interface but roughly still the same
• Input is an array of “struct pollfd”

‒ Each specifies fd, events to watch for, and (on return) events that occurred
‒ No more bitmaps or overwriting the input sets as in select()

Comparison between select() and poll()
• select() has existed for a long time and is widely available in Unix-like systems
• poll() is more recent, but it’s still been around a long time
• select() seems to be much more commonly used

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

15

16

9

Copyright © 2026 David B. JohnsonCOMP 321 Page 17

A Performance Problem with select() and poll()
They work well enough for a small number of fds, but not for (very) large
• A typical select() or poll() application makes this call over and over again,

looping, checking for new status on any of the same fds it is interested in
• But the kernel state to block the process (and know when to unbock the

process) for each of those calls must be set up “from scratch” on each call
‒ Must add the process to a separate kernel list for each of those fds

• And that kernel state is torn down on the completion of each of those calls
‒ Must remove the process from each of those separate lists in the kernel

• No state related to a series of select() or poll() calls can be retained in the
kernel (and thus reused) for each of these calls

Copyright © 2026 David B. JohnsonCOMP 321 Page 18

epoll: More Efficient I/O Multipliexing (Linux Only)
epoll operates through 3 separate kernel calls
• epoll_create()

‒ Creates a new epoll instance and returns a file descriptor for it
• epoll_ctl() (“control”)

‒ Used to register interest in some fd for a given epoll instance
‒ Can add, remove, or modify settings for an fd within that instance

• epoll_wait()
‒ Waits for I/O events, blocking the calling process until then
‒ The epoll instance state is retained and reused between epoll_wait() calls
‒ And changes in fd status are tracked in the instance, ready for the next call

FreeBSD and Solaris have similar (also non-standard) facilities

17

18

10

Copyright © 2026 David B. JohnsonCOMP 321 Page 19

Non-blocking I/O for a File Descriptor
read() and write() normally block the calling process
• I/O multiplexing can tell you which fds are “ready” for reading or writing

‒ Meaning it is now possible to do a read (or write) on it without blocking
• But is that enough to ensure your process never blocks on I/O, even if

multiplexing told you the fd is “ready” for that I/O?
• Usually yes, but not always, such as

‒ After an indication of ready for a write, a large write may still block
‒ After an indication of ready for a read, if you use, e.g., rio_readlineb(), it

may do an additional read(), if it hasn’t reached the newline yet
‒ An indication of ready for read only means ready then, but those available

characters might get consumed by another process before your read

• For a solid, robust server, you want to be sure blocking never occurs

Copyright © 2026 David B. JohnsonCOMP 321 Page 20

Turning Non-blocking Mode On/Off on an fd

A generic interface: do operation indicated by “cmd” on the file descriptor “fd”
• Two fcntl commands are of interest here

‒ F_GETFL – gets (and returns) the current flags associated with fd
‒ F_SETFL – sets the flags for the file descriptor fd to the value arg

• To enable non-blocking mode on file descriptor fd
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);

• Or, if you happen to want to turn it off for file descriptor fd
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) & ~O_NONBLOCK);

• Can also set O_NONBLOCK in the “flags” argument on open()

int fcntl(int fd, int cmd, ... /* arg */);

19

20

11

Copyright © 2026 David B. JohnsonCOMP 321 Page 21

The Effect of Non-blocking Mode on I/O
Any I/O call on a non-blocking file descriptor will never block
• Any I/O call will still complete normally, if it can
• But if it would instead have to block

‒ read()/write() will return -1, with errno = EAGAIN or EWOULDBLOCK
(different systems use one of these two errno codes)

Saves your application (e.g., server) from blocking, but then what?
• If the I/O on that fd would have blocked, the return from read()/write() is now

instead immediate, with errno set
• But how do you know when to try reading/writing that fd again next

‒ You shouldn’t just keep retrying immediately in a loop
‒ Periodic retries with delays is still wasteful and may wait longer than needed

Copyright © 2026 David B. JohnsonCOMP 321 Page 22

Using Multiplexing and Non-Blocking I/O Together
Can use together to handle I/O more efficiently

After multiplexing tells you the fd is ready for reading (or writing)
• Then loop doing reads for all available data (or to write everything you want)
• And the loop stops harmlessly on -1 and EAGAIN/EWOULDBLOCK if needed
• Then you wait for multiplexing to tell you again to read (or write)

Handles I/O with fewer kernel calls, since you might get to do multiple reads or
writes without doing the I/O multiplexing call before each individual I/O
• Instead of multiplex, read; multiplex, read; multiplex, read; multiplex, read; …
• Do multiplex, read, read, read, …; multiplex, read, read, …, multiplex, …

(getting all pending data after each multiplex instead of just next single chunk)

21

22

