
1

Copyright © 2026 David B. JohnsonCOMP 321 Page 1

Threads

COMP 321

Dave Johnson

Copyright © 2026 David B. JohnsonCOMP 321 Page 2

Review: Processes and Threads
Classically, a process has a single thread of execution
• One point of execution progress, one set of register values
• Example:

main(…)
{

…
return 0

}

But a process may be “multithreaded”
• Multiple “threads” sharing the same address space
• All running concurrently, all “at once,” cooperating
• Threads are also called lightweight processes

1

2

2

Copyright © 2026 David B. JohnsonCOMP 321 Page 3

Why Multiple Threads Sharing an Address Space?
Easy cooperation between these threads since they share all data, such as

• A windowing GUI system
‒ All threads share the same data structures of what’s on the screen
‒ One thread tracking the mouse on the screen
‒ One thread for each open window

• Microsoft Word
‒ On thread managing the user’s keyboard
‒ One thread doing line breaks, one doing paragraph breaks, one page breaks
‒ One thread doing spell checking, one for grammar checking, etc.

Copyright © 2026 David B. JohnsonCOMP 321 Page 4

Creating a New Thread

Creates a new thread that begins by calling the function start_routine(arg)
• Puts the thread id of the new thread into memory at address “thread”
• The “attr” (attributes) is usually NULL, giving default thread attributes
• So to create a new thread that begins by calling my_func(my_arg), use

pthread_t tid;
int error; // the errno value is returned rather than put in errno
error = pthread_create(&tid, NULL, my_func, my_arg);

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void *),
void *restrict arg);

3

4

3

Copyright © 2026 David B. JohnsonCOMP 321 Page 5

A Simple pthread_create() Example
struct my_args { int a, b, c; } data;

pthread_t tid;
int error;

data.a = 3;
data.b = 2;
data.c = 1;

error = pthread_create(&tid, NULL,
my_thread, &data);

. . .

void *
my_thread(void *arg)
{

struct my_args *data = arg;

printf("%d %d %d\n",
data->a, data->b, data->c);

. . .
}

Copyright © 2026 David B. JohnsonCOMP 321 Page 6

fork() vs. pthread_create()

creates a new process creates a new thread in the same process

new process begins execution
at the return from fork(), the

same place as the parent

new thread begins execution by
calling specified procedure; the parent

returns normally from pthread_create()

no arguments are passed to
the new process, since it isn’t

a procedure call

A single “generic” pointer argument
is passed to the new thread

creates a new address space new thread runs in the same address space

fork() pthread_create()

5

6

4

Copyright © 2026 David B. JohnsonCOMP 321 Page 7

Each Thread Has Its Own Stack
Each thread executes concurrently and independently
• Each thread does its own procedure calls and returns
• Each thread has its own local variables
• Each thread has its own register values, including its own stack pointer

pthread_create() allocates the memory for the new thread’s stack
• The size of the stack for a new thread

‒ Normally, just use the default size (on CLEAR, 2 MB)
‒ Can use pthread_attr_setstacksize() to set the stack size in the

pthread_attr_t attributes that you will pass to pthread_create()
• The memory for the stack is freed automatically when the thread terminates

Copyright © 2026 David B. JohnsonCOMP 321 Page 8

Termination of a Thread

A thread terminates when any of the following happens

• When the thread calls pthread_exit() – retval may be NULL

• Or when the thread returns from its “start routine” – this is the same as the
thread calling pthread_exit() with that same pointer

• Or when it is canceled by some thread calling pthread_cancel() with its tid

• Or when any of the threads in that process call exit(3) or _exit() or the main
thread returns from main() or the process otherwise terminates

‒ Beware: this terminates all threads in that process

[[noreturn]] void pthread_exit(void *retval);

7

8

5

Copyright © 2026 David B. JohnsonCOMP 321 Page 9

Waiting (or Not) for a Thread to Terminate

Waits for the specified thread to terminate (must wait for a specific tid)
• If that thread has already terminated, pthread_join() returns immediately
• retval gives address of where to put a copy of retval pointer from the thread

‒ If retval here is NULL, the return value from the thread is thrown away

Changes the thread to “detached” so that it cleans up for itself on termination
• No one needs to (or can) call pthread_join() on it, no need to wait on it

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

Copyright © 2026 David B. JohnsonCOMP 321 Page 10

Thread Synchronization
Remember our X = X + 1 and X = X + 2 example (and worse)
• The threads in a process all share the same memory (process’s address space)
• Need a way to synchronize threads and allow them to cooperate safely

Pthreads provides two interrelated mechanisms
• mutex

‒ Allows threads to ensure that no more than one thread at a time is
executing inside some critical section of the program’s code

• condition variable (with an associated mutex)
‒ Allows threads to do conditional behavior, waiting for some condition,

coordinated and still protected by the mutual exclusion of associated mutex

9

10

6

Copyright © 2026 David B. JohnsonCOMP 321 Page 11

Mutexes

• Must initialize it before use (can instead set to PTHREAD_MUTEX_INITIALIZER)
‒ Use NULL for attr for default attributes

• If you dynamically allocate memory for mutex, must destroy it before free

• Between lock and unlock, any other thread attempting lock will be blocked

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Copyright © 2026 David B. JohnsonCOMP 321 Page 12

A Simple Mutex Example
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

int X = 0;

Thread 1

pthread_mutex_lock(&mutex);
X = X + 1;
pthread_mutex_unlock(&mutex);

Using the mutex guarantees X = 3 when this is all done

Thread 2

pthread_mutex_lock(&mutex);
X = X + 2;
pthread_mutex_unlock(&mutex);

11

12

7

Copyright © 2026 David B. JohnsonCOMP 321 Page 13

Condition Variables
A condition variable has no actual value!
• It’s a way to wait for or signal the occurrence of some generalized condition
• Internally, it maintains a list/set/collection of threads waiting on it
• But that is not visible and cannot be directly manipulated

• Must initialize it before use (can instead set to PTHREAD_COND_INITIALIZER)
‒ Use NULL for attr for default attributes

• If you dynamically allocate memory for cond var, must destroy it before free

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

int pthread_cond_destroy(pthread_cond_t *cond);

Copyright © 2026 David B. JohnsonCOMP 321 Page 14

Condition Variables
Can only be used while you have the associated mutex locked

• Atomically releases the associated mutex and adds this thread to those
collection of those threads waiting on this condition

‒ The actual condition (its meaning) depends on the code in how it is used

• Unblocks one (really, at least one) thread waiting on this condition variable
‒ Which automatically relocks the mutex (when it can) before proceeding

• If no threads are waiting on this condition variable, the signal has no effect

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

int pthread_cond_signal(pthread_cond_t *cond);

13

14

8

Copyright © 2026 David B. JohnsonCOMP 321 Page 15

Example: The Bounded-Buffer Problem
Problem definition
• A buffer that can hold N “items”
• One producer thread that repeatedly produces an item and adds it to buffer
• One consumer thread that repeatedly removes an item from the buffer and

consumes it

• (Consider alternate versions with more than one producer and one consumer)

0 1 2 3 4 5 6 7 8 9

N = 10

count = 2
out = 3 in = 5

Copyright © 2026 David B. JohnsonCOMP 321 Page 16

A Solution to the Bounded-Buffer Problem
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t full = PTHREAD_COND_INITIALIZER;
pthread_cond_t empty = PTHREAD_COND_INITIALIZER;

struct item buffer[N];
int in = 0, out = 0, count = 0;

void add_item(struct item *data) {
. . .

}

void remove_item(struct item *data) {
. . .

}

15

16

9

Copyright © 2026 David B. JohnsonCOMP 321 Page 17

A Solution to the Bounded-Buffer Problem
int main() {

pthread_t prod, cons;

pthread_create(&prod,
NULL, producer, NULL);

pthread_create(&cons,
NULL, consumer, NULL);

pthread_join(prod, NULL);
pthread_join(cons, NULL);

exit(0);
}

void *producer(void *arg) {
struct item new;
while (1) {

. . .
add_item(&new);

}
}

void *consumer(void *arg) {
struct item new;
while (1) {

remove_item(&new);
. . .

}
}

Copyright © 2026 David B. JohnsonCOMP 321 Page 18

The add_item and remove_item Procedures
void add_item(struct item *data)
{

pthread_mutex_lock(&mutex);

while (count == N)
pthread_cond_wait(&full, &mutex);

buffer[in] = *data;
count++;
in = (in + 1) % N;

pthread_cond_signal(&empty);

pthread_mutex_unlock(&mutex);
}

void remove_item(struct item *data)
{

pthread_mutex_lock(&mutex);

while (count == 0)
pthread_cond_wait(&empty, &mutex);

*data = buffer[out];
count--;
out = (out + 1) % N;

pthread_cond_signal(&full);

pthread_mutex_unlock(&mutex);
}

17

18

10

Copyright © 2026 David B. JohnsonCOMP 321 Page 19

Example: The Dining Philosophers Problem
A round table with 5 philosophers
• Each has an assigned seat at the table
• Between each philosopher is a fork

Each independently alternates doing
• Thinking for a while and
• Eating spaghetti for a while
• The supply of spaghetti is unlimited

A philosopher needs two forks to eat
• Must be the fork to her left and to her right

0

14

23

2

13

04

Copyright © 2026 David B. JohnsonCOMP 321 Page 20

The Life of a Philosopher
philosopher(i) { // i = 0 . . . 4

think . . .

pick up one fork

pick up the other fork

eat . . .

put down one fork

put down the other fork

}

0

14

23

2

13

04

19

20

11

Copyright © 2026 David B. JohnsonCOMP 321 Page 21

Specific Rules
• Each philosopher can use only the

fork to her left and the fork to her right

• A philosopher can pick up only one
fork at a time

• A philosopher must hold both
forks simultaneously to eat

• It must be possible for two
philosophers to eat at the same time

0

14

23

2

13

04

Copyright © 2026 David B. JohnsonCOMP 321 Page 22

A Solution to the Dining Philosophers Problem
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t ready[5];

int avail[5] = { 2, 2, 2, 2, 2 }; // count of forks logically available to philosopher i

void pickup_forks(int i) {
. . .

}

void putdown_forks(int i) {
. . .

}

21

22

12

Copyright © 2026 David B. JohnsonCOMP 321 Page 23

int main() {
pthread_t phils[5];
int args[5];
int i;

for (i = 0; i < 5; i++)
pthread_cond_init(&ready[i], NULL);

for (i = 0; i < 5; i++) {
args[i] = i;
pthread_create(&phils[i], NULL, philosopher, &args[i]);

}

for (i = 0; i < 5; i++)
pthread_join(phils[i], NULL);

exit(0);
}

void *
philosopher(void *arg)
{

int i = *(int *)arg;

while (1) {
printf("thinking %d\n", i);
pickup_forks(i);
printf("eating %d\n", i);
putdown_forks(i);

}

return NULL;
}

A Solution to the Dining Philosophers Problem

Copyright © 2026 David B. JohnsonCOMP 321 Page 24

The pickup_forks and putdown_forks Procedures
void pickup_forks(int i)
{

pthread_mutex_lock(&mutex);

while (avail[i] != 2)
pthread_cond_wait(&ready[i], &mutex);

avail[(i + 1) % 5]--; // left
avail[(i + 4) % 5]--; // right

pthread_mutex_unlock(&mutex);
}

void putdown_forks(int i)
{

pthread_mutex_lock(&mutex);

avail[(i + 1) % 5]++; // left
avail[(i + 4) % 5]++; // right

if (avail[(i + 1) % 5] == 2)
pthread_cond_signal(&ready[(i + 1) % 5]);

if (avail[(i + 4) % 5] == 2)
pthread_cond_signal(&ready[(i + 4) % 5]);

pthread_mutex_unlock(&mutex);
}

This solution works, except that the problem of “starvation” is possible

23

24

13

Copyright © 2026 David B. JohnsonCOMP 321 Page 25

Consider the following possible repeating sequence for philosophers 1, 2, and 3

Philosopher 2 can starve if one or both of forks 1 and 2 are always in use
• Solving this is subtle (but not really hard)

The Problem of Starvation

phil 2

fork 0
phil 1
fork 1

fork 3
phil 3
fork 2

= philosopher is eating = fork is in use

Copyright © 2026 David B. JohnsonCOMP 321 Page 26

How Does errno Work With Threads?
How to keep one thread from changing errno for another thread
• errno is “supposed to be” a global variable, as in

extern int errno;
• But that would mean a single errno shared by all threads in that process

‒ A kernel call by one thread ends up setting errno to indicate some problem
‒ Another thread also does some other kernel call which can also set errno
‒ The second thread’s errno value thus overwrites the errno value that the

first thread wanted to be able to see
• Historically, errno’s definition was created before Unix supported threads

‒ For modern systems, it still seems like a global variable, but it really isn’t one

do not do this

25

26

14

Copyright © 2026 David B. JohnsonCOMP 321 Page 27

How to Use errno Correctly
Do not declare errno yourself
• Let #include <errno.h> do it correctly for you
• Different systems declare it differently, so don’t try to do it yourself
• It will work, e.g., on either the left or the right of an assignment

errno = something
something = errno

• or any other forms of expressions involving errno

If you are curious (you do not need to know this), here’s how its done on CLEAR
#define errno (*__errno_location())

__errno_location() returns a pointer to a thread-specific location for its errno

Copyright © 2026 David B. JohnsonCOMP 321 Page 28

Issues in Thread Scheduling
A thread scheduler has many things to manage and keep track of
• Giving each thread an (approximately) “fair” share of the CPU time

‒ Thread context switching to divide the CPU time that the kernel gives you
among the user-level threads for that process

• Managing threads that are blocked on I/O
‒ Knowing which threads should get a share of CPU time

• Keeping track of and joining threads when requested
‒ Know which threads have completed and not yet been joined
‒ Managing a join request for some thread

• Reclaiming thread resources after a threads complete
‒ Example: free the thread’s stack (it was automatically allocated at create)

27

28

15

Copyright © 2026 David B. JohnsonCOMP 321 Page 29

Kernel-Level Threads vs. User-Level Threads
Can multiplex user-level threads on kernel-level level threads in many ways

One kernel-level thread for
multiple user-level threads

One kernel-level thread
per user-level thread

Many user-level threads
on many kernel-level threads

Copyright © 2026 David B. JohnsonCOMP 321 Page 30

Kernel-Level Threads vs. User-Level Threads
Can multiplex user-level threads on kernel-level level threads in many ways

• 1:1 (kernel-level threading) – each user-level thread is mapped to a
separate thread in the kernel

‒ Kernel is in control of scheduling each thread, but expensive

• N:1 (user-level threading) – all user-level threads are mapped to a single
thread in the kernel

‒ Kernel doesn’t even need to know that threading is being used
‒ Scheduling of threads is done at the user level, much less expensive

• N:M (hybrid threading) – N user-level threads mapped to M kernel threads
‒ Flexible dynamic user-level scheduling between user and kernel scheduling
‒ Simple example: number of kernel threads (M) = the number of CPU cores

29

30

16

Copyright © 2026 David B. JohnsonCOMP 321 Page 31

The Effect of a Kernel-Level Thread Blocking
A kernel-level thread blocks when doing something that the kernel blocks it for

• Example: a user-level thread starts some blocking I/O operation
‒ The kernel-level thread currently running it is blocked by the kernel
‒ So that kernel-level thread no longer available to run any user-level threads

• The other kernel-level threads handling that process’s threads can still run

‒ But now less CPU resources to run threads in this process

• And if there’s only one kernel-level thread for that process’s threads
‒ Then all user-level threads in that process are effectively blocked

• Or if now all kernel-level threads for that process are blocked
‒ Then again, all user-level threads in that process are effectively blocked

Copyright © 2026 David B. JohnsonCOMP 321 Page 32

Blocking for I/O in a User-Thread is Very Bad
This kind of blocking can be avoided and needs to be avoided

• Blocking for I/O would block the current kernel-level thread
‒ No longer available to service other user-level threads for this process
‒ And could (depending on setup) be the last kernel-level thread for it

• It is thus important to provide I/O multiplexing and non-blocking I/O within
the threads library

‒ To make sure user-level threads don’t block on I/O
‒ And to enable the thread scheduler to wake up appropriate threads when

they have pending I/O that is ready

31

32

17

Copyright © 2026 David B. JohnsonCOMP 321 Page 33

Be Careful About Signals and Thread Scheduling
As we’ve seen, a signal can happen anytime, asynchronously
• As always, if you have a signal handler for that signal

‒ Be careful what you do in that signal handler
‒ Be careful when you should block and can unblock that signal

• This issue can particularly impact thread scheduling
‒ A signal may relate to something that directly impacts the scheduler
‒ A signal handler may need to read and/or modify some state used by the

thread scheduler
‒ For example, SIGPROF (sort of similar to SIGALRM) can be used to tell the

scheduler to switch to running some other thread now
‒ But signal could occur as the scheduler is switching for some other reason,

or as some new thread is being created or an existing thread terminated

33

