Threads

COMP 321

Dave Johnson

% RICE

COMP 321 Copyright © 2026 David B. Johnson Page 1

Review: Processes and Threads

Classically, a process has a single thread of execution
* One point of execution progress, one set of register values

* Example:
main(...)
{
.r.(.-:‘turn 0
}

But a process may be “multithreaded”

* Multiple “threads” sharing the same address space
* All running concurrently, all “at once,” cooperating
* Threads are also called lightweight processes

COMP 321 Copyright © 2026 David B. Johnson Page 2

Why Multiple Threads Sharing an Address Space?

Easy cooperation between these threads since they share all data, such as

* A windowing GUI system
— All threads share the same data structures of what’s on the screen
—One thread tracking the mouse on the screen
— One thread for each open window

* Microsoft Word
— On thread managing the user’s keyboard
— One thread doing line breaks, one doing paragraph breaks, one page breaks
— One thread doing spell checking, one for grammar checking, etc.

COMP 321 Copyright © 2026 David B. Johnson Page 3

Creating a New Thread

int pthread create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void *),
void *restrict arg);

Creates a new thread that begins by calling the function start_routine(arg)

* Puts the thread id of the new thread into memory at address “thread”

* The “attr” (attributes) is usually NULL, giving default thread attributes

* So to create a new thread that begins by calling my_func(my_arg), use
pthread_t tid;
int error; // the errno value is returned rather than put in errno
error = pthread_create(&tid, NULL, my_func, my_arg);

COMP 321 Copyright © 2026 David B. Johnson Page 4

A Simple pthread_create() Example

struct my_args { inta, b, c; } data;

pthread_t tid;

int error;

data.a =3;
data.b = 2;
data.c=1;

error = pthread_create(&tid,

my_thread, &data);

COMP 321

void *
my_thread(void *arg)
{

struct my_args *data = arg;

printf("%d %d %d\n",
data->a, data->b, data->c);

NULL, }

Copyright © 2026 David B. Johnson Page 5

fork() vs. pthread_create()

fork()

creates a new process
creates a new address space

new process begins execution
at the return from fork(), the
same place as the parent

no arguments are passed to
the new process, since it isn’t
a procedure call

COMP 321

pthread_create()

creates a new thread in the same process
new thread runs in the same address space

new thread begins execution by
calling specified procedure; the parent
returns normally from pthread_create()

A single “generic” pointer argument
is passed to the new thread

Copyright © 2026 David B. Johnson Page 6

Each Thread Has Its Own Stack

Each thread executes concurrently and independently

* Each thread does its own procedure calls and returns

* Each thread has its own local variables

* Each thread has its own register values, including its own stack pointer

pthread_create() allocates the memory for the new thread’s stack
* The size of the stack for a new thread
— Normally, just use the default size (on CLEAR, 2 MB)

—Can use pthread_attr_setstacksize() to set the stack size in the
pthread_attr_t attributes that you will pass to pthread_create()

* The memory for the stack is freed automatically when the thread terminates

COMP 321 Copyright © 2026 David B. Johnson Page 7

Termination of a Thread

[[noreturn]] void pthread_exit(void *retval);

A thread terminates when any of the following happens
* When the thread calls pthread_exit() — retval may be NULL

¢ Or when the thread returns from its “start routine” — this is the same as the
thread calling pthread_exit() with that same pointer

* Or when it is canceled by some thread calling pthread_cancel() with its tid

* Or when any of the threads in that process call exit(3) or _exit() or the main
thread returns from main() or the process otherwise terminates

— Beware: this terminates all threads in that process

COMP 321 Copyright © 2026 David B. Johnson Page 8

Waiting (or Not) for a Thread to Terminate

int pthread_join(pthread_t thread, void **retval);

Waits for the specified thread to terminate (must wait for a specific tid)

* If that thread has already terminated, pthread_join() returns immediately

* retval gives address of where to put a copy of retval pointer from the thread
—If retval here is NULL, the return value from the thread is thrown away

int pthread _detach(pthread_t thread);

Changes the thread to “detached” so that it cleans up for itself on termination
* No one needs to (or can) call pthread_join() on it, no need to wait on it

COMP 321 Copyright © 2026 David B. Johnson Page 9

Thread Synchronization

Remember our X=X + 1 and X = X + 2 example (and worse)
* The threads in a process all share the same memory (process’s address space)
* Need a way to synchronize threads and allow them to cooperate safely

Pthreads provides two interrelated mechanisms
* mutex

— Allows threads to ensure that no more than one thread at a time is
executing inside some critical section of the program’s code

* condition variable (with an associated mutex)

— Allows threads to do conditional behavior, waiting for some condition,
coordinated and still protected by the mutual exclusion of associated mutex

COMP 321 Copyright © 2026 David B. Johnson Page 10

10

Mutexes

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);
int pthread_mutex_destroy(pthread _mutex_t *mutex);

* Must initialize it before use (can instead set to PTHREAD_MUTEX_INITIALIZER)
—Use NULL for attr for default attributes
* |f you dynamically allocate memory for mutex, must destroy it before free

int pthread _mutex_lock(pthread _mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

* Between lock and unlock, any other thread attempting lock will be blocked

COMP 321 Copyright © 2026 David B. Johnson Page 11

11

A Simple Mutex Example

pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

int X =0;

Thread 1 Thread 2
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex);
X=X+1, X=X+2;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&mutex);

Using the mutex guarantees X = 3 when this is all done

COMP 321 Copyright © 2026 David B. Johnson Page 12

12

Condition Variables

A condition variable has no actual value!

* |t’s a way to wait for or signal the occurrence of some generalized condition
* Internally, it maintains a list/set/collection of threads waiting on it

* But that is not visible and cannot be directly manipulated

int pthread _cond_init(pthread _cond_t *restrict cond,
const pthread_condattr_t *restrict attr);
int pthread _cond_destroy(pthread cond_t *cond);

* Must initialize it before use (can instead set to PTHREAD_COND_INITIALIZER)
—Use NULL for attr for default attributes
* If you dynamically allocate memory for cond var, must destroy it before free

COMP 321 Copyright © 2026 David B. Johnson Page 13

13

Condition Variables

Can only be used while you have the associated mutex locked

int pthread _cond_wait(pthread _cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

* Atomically releases the associated mutex and adds this thread to those
collection of those threads waiting on this condition

—The actual condition (its meaning) depends on the code in how it is used

int pthread_cond_signal(pthread_cond_t *cond);

* Unblocks one (really, at least one) thread waiting on this condition variable
— Which automatically relocks the mutex (when it can) before proceeding
* If no threads are waiting on this condition variable, the signal has no effect

COMP 321 Copyright © 2026 David B. Johnson Page 14

14

Example: The Bounded-Buffer Problem

Problem definition
* A buffer that can hold N “items”
* One producer thread that repeatedly produces an item and adds it to buffer

* One consumer thread that repeatedly removes an item from the buffer and
consumes it

0 1 2 3 4 5 6 7 8 9

N=10

out=3—T T—in=5

count=2

* (Consider alternate versions with more than one producer and one consumer)

COMP 321 Copyright © 2026 David B. Johnson Page 15

15

A Solution to the Bounded-Buffer Problem

pthread _mutex_t mutex = PTHREAD MUTEX_INITIALIZER;

pthread_cond_t full = PTHREAD_COND_INITIALIZER;
pthread_cond_t empty = PTHREAD_COND_INITIALIZER;

struct item buffer[N];
int in=0, out=0, count =0;

void add_item(struct item *data) {

}

void remove_item(struct item *data) {

}

COMP 321 Copyright © 2026 David B. Johnson Page 16

16

A Solution to the Bounded-Buffer Problem

int main() {
pthread_t prod, cons;

pthread create(&prod,
NULL, producer, NULL);

pthread_create(&cons,
NULL, consumer, NULL);

pthread_join(prod, NULL);
pthread join(cons, NULL);

exit(0);

COMP 321

void *producer(void *arg) {
struct item new;
while (1) {

;l;j;j_item(&new);
}
}

void *consumer(void *arg) {
struct item new;
while (1) {
remove_item(&new);

}

Copyright © 2026 David B. Johnson

Page 17

17

The add_item and remove_item Procedures

void add_item(struct item *data)

{

pthread_mutex_lock(&mutex);

while (count == N)

pthread _cond_wait(&full, &mutex);

buffer[in] = *data;
count++;
in=(in+1)%N;

pthread_cond_signal(&empty);

pthread_mutex_unlock(&mutex);

}

COMP 321

void remove_item(struct item *data)

{

pthread_mutex_lock(&mutex);

while (count == 0)

*data = buffer[out];
count--;
out=(out+1)%N;

pthread_cond_signal(&full);

Copyright © 2026 David B. Johnson

pthread_cond_wait(&empty, &mutex);

pthread_mutex_unlock(&mutex);

Page 18

18

Example: The Dining Philosophers Problem

A round table with 5 philosophers
* Each has an assigned seat at the table
* Between each philosopher is a fork

Each independently alternates doing
* Thinking for a while and

* Eating spaghetti for a while

* The supply of spaghetti is unlimited

A philosopher needs two forks to eat
* Must be the fork to her left and to her right

COMP 321 Copyright © 2026 David B. Johnson Page 19

19

The Life of a Philosopher

philosopher(i) { //i=0...4
think . ..
pick up one fork
pick up the other fork
eat...
put down one fork

put down the other fork

COMP 321 Copyright © 2026 David B. Johnson Page 20

20

10

Specific Rules

* Each philosopher can use only the
fork to her left and the fork to her right

* A philosopher can pick up only one
fork at a time

* A philosopher must hold both
forks simultaneously to eat

* It must be possible for two
philosophers to eat at the same time

COMP 321 Copyright © 2026 David B. Johnson Page 21
21

A Solution to the Dining Philosophers Problem

pthread _mutex_t mutex = PTHREAD MUTEX_INITIALIZER;

pthread _cond_t ready[5];

intavail[5]={2,2,2,2,2} // count of forks logically available to philosopher i

void pickup_forks(int i) {

}

void putdown_forks(int i) {

}

COMP 321 Copyright © 2026 David B. Johnson Page 22
22

11

A Solution to the Dining Philosophers Problem

int main() {

pthread_t phils[5];
int args[5];
inti;
for(i=0;i<5;i++)
pthread_cond_init(&ready[i], NULL);
for (i=0;i<5;i++){
args[i] =i;
pthread_create(&phils[i], NULL, philosopher, &args[i]);
}
for(i=0;i<5;i++)
pthread_join(phils[i], NULL);

void *
philosopher(void *arg)
{
inti=*(int *)arg;
while (1) {
printf("thinking %d\n", i);
pickup_forks(i);
printf("eating %d\n", i);
putdown_forks(i);

}

return NULL;
}

exit(0);
}
COMP 321 Copyright © 2026 David B. Johnson Page 23
23
The pickup_forks and putdown_forks Procedures
void pickup_forks(int i) void putdown_forks(int i)
{ {
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex);
while (avail[i] != 2) avail[(i + 1) % 5]++; // left
pthread_cond_wait(&ready[i], &mutex); avail[(i + 4) % 5]++; //right
avail[(i+ 1) % 5]--; /[left if (avail[(i + 1) % 5] == 2)
avail[(i+ 4) % 5]--; // right pthread_cond_signal(&ready[(i + 1) % 5]);
) if (avail[(i + 4) % 5] == 2)
) pthread_mutex_unlock(&mutex); pthread_cond_signal(&ready[(i + 4) % 5]);
pthread_mutex_unlock(&mutex);
}
This solution works, except that the problem of “starvation” is possible
COMP 321 Copyright © 2026 David B. Johnson Page 24
24

12

The Problem of Starvation

Consider the following possible repeating sequence for philosophers 1, 2, and 3
I - philosopher is eating = fork is in use

phil 1 — I — - .

phil 2

phil 3 ——— I — N

v

Philosopher 2 can starve if one or both of forks 1 and 2 are always in use
* Solving this is subtle (but not really hard)

COMP 321 Copyright © 2026 David B. Johnson Page 25

25

How Does errno Work With Threads?

How to keep one thread from changing errno for another thread
* errno is “supposed to be” a global variable, as in
extern int errno; <«— do not do this
* But that would mean a single errno shared by all threads in that process
— A kernel call by one thread ends up setting errno to indicate some problem
— Another thread also does some other kernel call which can also set errno

—The second thread’s errno value thus overwrites the errno value that the
first thread wanted to be able to see

* Historically, errno’s definition was created before Unix supported threads
— For modern systems, it still seems like a global variable, but it really isn’t one

COMP 321 Copyright © 2026 David B. Johnson Page 26

26

How to Use errno Correctly

Do not declare errno yourself
* Let #include <errno.h> do it correctly for you
* Different systems declare it differently, so don’t try to do it yourself
* It will work, e.g., on either the left or the right of an assignment
errno = something
something = errno
or any other forms of expressions involving errno

If you are curious (you do not need to know this), here’s how its done on CLEAR

#define errno (*__errno_location())
__errno_location() returns a pointer to a thread-specific location for its errno

COMP 321 Copyright © 2026 David B. Johnson Page 27

27

Issues in Thread Scheduling

A thread scheduler has many things to manage and keep track of
* Giving each thread an (approximately) “fair” share of the CPU time

— Thread context switching to divide the CPU time that the kernel gives you
among the user-level threads for that process

* Managing threads that are blocked on 1/O
— Knowing which threads should get a share of CPU time
* Keeping track of and joining threads when requested
— Know which threads have completed and not yet been joined
—Managing a join request for some thread
* Reclaiming thread resources after a threads complete
— Example: free the thread’s stack (it was automatically allocated at create)

COMP 321 Copyright © 2026 David B. Johnson Page 28

28

14

Kernel-Level Threads vs. User-Level Threads

Can multiplex user-level threads on kernel-level level threads in many ways
— — =
—> —

/

One kernel-level thread One kernel-level thread for Many user-level threads
per user-level thread multiple user-level threads on many kernel-level threads

COMP 321 Copyright © 2026 David B. Johnson Page 29

29

Kernel-Level Threads vs. User-Level Threads

Can multiplex user-level threads on kernel-level level threads in many ways

* 1:1 (kernel-level threading) — each user-level thread is mapped to a
separate thread in the kernel

—Kernel is in control of scheduling each thread, but expensive
* N:1 (user-level threading) — all user-level threads are mapped to a single
thread in the kernel
—Kernel doesn’t even need to know that threading is being used
—Scheduling of threads is done at the user level, much less expensive

* N:M (hybrid threading) — N user-level threads mapped to M kernel threads
— Flexible dynamic user-level scheduling between user and kernel scheduling
—Simple example: number of kernel threads (M) = the number of CPU cores

COMP 321 Copyright © 2026 David B. Johnson Page 30

30

15

The Effect of a Kernel-Level Thread Blocking

A kernel-level thread blocks when doing something that the kernel blocks it for

* Example: a user-level thread starts some blocking I/O operation
—The kernel-level thread currently running it is blocked by the kernel
- So that kernel-level thread no longer available to run any user-level threads

* The other kernel-level threads handling that process’s threads can still run
—But now less CPU resources to run threads in this process

* And if there’s only one kernel-level thread for that process’s threads
—Then all user-level threads in that process are effectively blocked

* Or if now all kernel-level threads for that process are blocked
—Then again, all user-level threads in that process are effectively blocked

COMP 321 Copyright © 2026 David B. Johnson Page 31

31

Blocking for 1/0 in a User-Thread is Very Bad

This kind of blocking can be avoided and needs to be avoided

* Blocking for I/0O would block the current kernel-level thread
— No longer available to service other user-level threads for this process
— And could (depending on setup) be the last kernel-level thread for it
* It is thus important to provide I/0 multiplexing and non-blocking 1/0 within
the threads library
—To make sure user-level threads don’t block on 1/0

— And to enable the thread scheduler to wake up appropriate threads when
they have pending I/O that is ready

COMP 321 Copyright © 2026 David B. Johnson Page 32

32

16

Be Careful About Signals and Thread Scheduling

As we’ve seen, a signal can happen anytime, asynchronously
* As always, if you have a signal handler for that signal
— Be careful what you do in that signal handler
— Be careful when you should block and can unblock that signal
* This issue can particularly impact thread scheduling
— A signal may relate to something that directly impacts the scheduler
— A signal handler may need to read and/or modify some state used by the
thread scheduler
— For example, SIGPROF (sort of similar to SIGALRM) can be used to tell the
scheduler to switch to running some other thread now

— But signal could occur as the scheduler is switching for some other reason,
or as some new thread is being created or an existing thread terminated

COMP 321 Copyright © 2026 David B. Johnson Page 33

33

17

