
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Some Notes on Thread Scheduling

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

A Thread Scheduler
A thread scheduler has many things to manage and keep track of
• Giving each thread an (approximately) “fair” share of the CPU time

‒ Thread context switching to divide the CPU time that the kernel gives you
among the user-level threads for that process

• Managing threads that are blocked on I/O
‒ Knowing which threads should get a share of CPU time

• Keeping track of and joining threads when requested
‒ Know which threads have completed and not yet joined
‒ Managing a join request for some thread

• Reclaiming thread resources after a threads complete
‒ Example: free the thread’s stack (it was automatically allocated at create)

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Kernel-Level Threads vs. User-Level Threads
Can multiplex user-level threads on kernel-level level threads in many ways

One kernel-level thread
Multiple user-level threads

One kernel-level thread
per user-level thread

Many user-level threads
on many kernel-level threads

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Kernel-Level Threads vs. User-Level Threads
Can multiplex user-level threads on kernel-level level threads in many ways

• 1:1 (kernel-level threading) – each user-level thread is mapped to a separate
thread in the kernel

‒ Kernel is in control of scheduling each thread, but expensive

• N:1 (user-level threading) – all user-level threads are mapped to a single
thread in the kernel thread

‒ Kernel doesn’t even need to know that threading is being used
‒ Scheduling of threads is done at the user level, much less expensive

• N:M (hybrid threading) – N user-level threads mapped to M kernel threads
‒ Flexible dynamic user-level scheduling between user and kernel scheduling
‒ Simple example: M could be the number of CPU cores

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

The Effect of a Kernel-Level Thread Blocking
A kernel-level thread blocks when doing something that the kernel blocks it for

• Example: a user-level thread starts some blocking I/O operation
‒ The kernel-level thread currently running it is blocked by the kernel
‒ So that kernel-level thread no longer available to run any user-level threads

• The other kernel-level threads handling that process’s threads can still run

• But if there’s only one kernel-level thread for that process’s threads
‒ Then all user-level threads in that process are effectively blocked

• Or if now all kernel-level threads for that process are blocked
‒ Then again, all user-level threads in that process are effectively blocked

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Blocking for I/O in a User-Thread is Very Bad
This kind of blocking can be avoided and needs to be avoided

• This would block the current kernel-level thread
‒ No longer available to service other user-level threads for this process
‒ And could (depending on setup) be the last kernel-level thread for it

• It is thus important to provide I/O multiplexing and non-blocking I/O within
the threads library

‒ To make sure user-level threads don’t block on I/O
‒ And to enable the thread scheduler to wake up appropriate threads when

they have pending I/O that is ready

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Be Careful About Signals and Thread Scheduling
As we’ve seen, a signal can happen anytime, asynchronously
• As always, if you have a signal handler for that signal

‒ Be careful what you do in that signal handler
‒ Be careful when you should block and can unblock that signal

• This issue can particularly impact thread scheduling
‒ A signal may relate to something that directly impacts the scheduler
‒ A signal handler may need to read and/or modify some state used by the

scheduler
‒ For example, SIGPROF can be used to tell the scheduler to switch to

running some other thread now
‒ But that could occur as the scheduler is switching for some other reason,

or as some new thread is being created or an existing thread terminated

7

