System-Level 1/0:
File Descriptor State Sharing

COMP 321

Dave Johnson

% RICE

COMP 321 Copyright © 2026 David B. Johnson Page 1

Consider the Following Example

We compile the source file “abc.c” to make the program “abc”
int main()

{
write(1, "ABCDEFGHIJKLMNOPQRSTUVWXYZ\n", 27);

return O;
}
And we compile the source file “123.c” to make the program “123”
int main()

{
write(1, "0123456789\n", 11);

return O;

}

COMP 321 Copyright © 2026 David B. Johnson Page 2




Consider the Following Example

Now suppose we put the following 2 commands in a shell script file “doit.sh”
.Jabc
/123

What if we now run the command?
S sh doit.sh

What we see on the screen is
ABCDEFGHIJKLMNOPQRSTUVWXYZ\n0123456789\n

Which looks like this on the screen

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

COMP 321 Copyright © 2026 David B. Johnson Page 3

Now Consider the Following Further Example

What if we now run the command?
S sh doit.sh > OUT

What we expect to see in the file OUT is
ABCDEFGHIJKLMNOPQRSTUVWXYZ\n0123456789\n

But with a “simplistic” implementation, what we’ll get in OUT is
0123456789\nLMNOPQRSTUVWXYZ\n

Let’s look at why . . .

COMP 321 Copyright © 2026 David B. Johnson Page 4




Analyzing This Example

* The child shell opens fork()
“OUT”, and thus current v
fd offset=0 Child shell process

* Does fork() to run abc to run doit.sh command

* Does fork() to run 123 second fork?
fork() fork()

COMP 321

Original shell process

Child process to Child process to
run abc command run 123 command

Copyright © 2026 David B. Johnson

* What is the child shell fd
offset at the time of this
first fork?

* What is the child shell fd
offset at the time of this

Page 5

Reminder: The Current File Offset in an fd

Each open file descriptor has an associated offset (i.e., position) within the file
* The current file offset is initialized to O (i.e., the beginning of the file’s data)

when the file descriptor is opened (e.g., from open or creat)

* Asingle current fd offset is used jointly for both reading and writing this fd
—Any read from this fd advances the fd’s offset by the number of bytes

actually read

— Any write to this fd advances this same offset by the number of bytes

actually written

* Example: repeated reading from the file sequentially transfers each next part
of the file, until reaching the end of the file (as limited by the size of the file)

COMP 321

Copyright © 2026 David B. Johnson

Page 6




Kernel File Descriptor Data Structures

In the kernel for each process (e.g., in the process’s PCB)

* An array, the file descriptor table for this process, indexed by the fd number
(which are small integers)

* Each entry is a pointer to the open file table entry for that open file
* Oris NULL if that fd is not open now in this process

In the kernel, shared by all processes, the system-wide open file table
* Remembers current offset position and flags (i.e., O_RDONLY, O_TRUNC, etc.)
* And a pointer to the vnode table entry for the file (i.e., object) that is open

In the kernel, shared by all processes, the system-wide vnode table
* Remembers a copy of control state information (i.e., metadata) for that file

COMP 321 Copyright © 2026 David B. Johnson Page 7

Independent File Opens vs. Shared fd State

Only one entry in the vnode table for each file (or other type of object)
* No matter how many times that file is open, and
* No matter how it was opened and by which process

Each independent open (or creat, etc.) results in a new open file table entry
* And thus an independent offset (i.e., position) in that open file

* And a new set of remembered flags (e.g., O_RDONLY, O_TRUNC, etc.)

* All point to the same entry in the vnode table

Creating a new fd from some existing fd shares existing open file table entry
* Thus shares the open file offset and open file flags

COMP 321 Copyright © 2026 David B. Johnson Page 8




Indexed by fd

Kernel File Descriptor Data Structures

File Descriptor Table Open File Table vnode Table
(one table per process) (shared by all process) (shared by all process)
0 > .
current fd offset protection & type
1 ~_ opfn fd flags / uid & gid
refcount=1 inod ber 78
) ~—_ inode number
N \ / file size
3 NULL -
v \ current fd offset refcount =1
4 NULL \ open fd flags
refcount = 1 »| protection & type
. vee uid & gid
) current fd offset inode number 42
open fd flags file size

COMP 321 Copyright © 2026 David B. Johnson Page 9

Aside: What Is an inode and What Is a vnode?

Unix/Linux supports many different types of file systems

Each has an on-disk data structure for each file known as an inode

* Short for “index node” since it provides (among other information) an “index”
of which “blocks” of disk space store each part of the file’s data

* We'll look more at inodes later when we look at file systems

A vnode is an in-memory data structure for a file, with two purposes
* Remembers in memory a copy of the inode information from disk for that file
* Provides a “wrapper” layer over the inode information in memory

— Most of the kernel treats all vnodes the same (a “virtual inode”)

— And the differences between the inode format for one type of file system

and another are handled all together through this “wrapper”
COMP 321 Copyright © 2026 David B. Johnson Page 10

10




Again, Analyzing This Example

Original shell process

« The child shell opens fork) * What is the child shell fd
“OUT” and thus current v offset at the time of this
fd offset =0 Child shell process first f?rk? _

« Does fork() to run abc to run doit.sh command * What is the child shell fd

offset at the time of this

* Does fork() to run 123 second fork?

fork() fork()
Child process to Child process to
run abc command run 123 command
COMP 321 Copyright © 2026 David B. Johnson Page 11

11

How it Really Works

. * The new abc child shares
Original shell process this open file table entry
* The child write() moves the
* The child shell opens fork() offset forward by 27
“OUT”, and thus current v (number of bytes written)
fd offset =0 Child shell process * New 123 child also shares
* Does fork() to run abc to run doit.sh command this open file table
« Does fork() to run 123 entry, so its new write()
fork() fork() starts at that position
Child process to Child process to
run abc command run 123 command
COMP 321 Copyright © 2026 David B. Johnson Page 12

12



Instead, With a “Simplistic” Implementation

If the current offset was not shared across the fork()

* The abc child would start writing at offset 0, copied from its parent like the
rest of its address space

* When the abc child exits, any changes to the offset would be thrown away
with the rest of that process’s address space

* The 123 child would thus start also at offset 0, copied from its parent like the
rest of its address space
So we’d (incorrectly) end up with the following in the file OUT
0123456789\nLMNOPQRSTUVWXYZ\n

N

123’s write() incorrectly starts at offset 0

COMP 321 Copyright © 2026 David B. Johnson Page 13

13

Again, With the Correct Implementation

Because the current offset is shared across the fork()

* The abc child starts writing at offset O, since that is the current shared offset
(the shell hasn’t written to that fd after opening it)

* When the abc child exits, its address space is thrown away, but the shared
offset for that file descriptor remains in the shared open file table entry

* The 123 child thus starts at the same offset that the abc child was at when it
completed, since that offset is still in the open file table entry

So we’d correctly end up with the following in the file OUT
ABCDEFGHIJKLMNOPQRSTUVWXYZ\n0123456789\n

123’s write() correctly starts at the shared offset position

COMP 321 Copyright © 2026 David B. Johnson Page 14

14




Summary: Handling File Descriptors During a fork()

The kernel copies the parent process’s entire address space to create the child’s

In addition, the kernel effectively “copies” the parent PCB file descriptor table

* Each entry in this array is either NULL or is a pointer to the corresponding open
file table entry

* Copy each entry (i.e., each pointer) to corresponding entry in child’s PCB

* And, if not equal to NULL, increase the reference count on the corresponding
open file table entry

—This open file table entry is shared between the parent and the child

COMP 321 Copyright © 2026 David B. Johnson Page 15

Kernel File Data Structures Before the Fork

Indexed by fd

File Descriptor Table Open File Table v-node Table
(for parent process) (shared by all process) (shared by all process)
0
1 = current fd offset protection & type
2 ~ open fd flags / uid & gid
N refcouy inode number 78
o \ file size
current fd offset refcount =1
open fd flags
refcount =1

»| protection & type

uid & gid
current fd offset 'nOde_”UfT‘bel’ 42
open fd flags file size
refcount > refcount = 2

COMP 321 Copyright © 2026 David B. Johnson

Page 16




Indexed by fd

Indexed by fd

Kernel File Data Structures After the Fork

N~ O

N O

File Descriptor Table
(for parent process)

Open File Table
(shared by all process)

[

—~
Q

(for child pretcess) ?Z&gﬂip:gzs
/ /
~
| currentfd offset
open fd flags
eee refcount >

COMP 321

current fd offset
open fd flags

refcou V

protection & type
/ uid & gid

current fd offset

v-node Table
(shared by all process)

inode number 78
file size
refcount =1

protection & type

e

Copyright © 2026 David B. Johnson

uid & gid
inode number 42
file size
refcount = 2

Page 17

17

Duplicating a File Descriptor within a Process

int dup(int oldfd);

int dup2(int oldfd, int newfd);

Assigns a new (additional) descriptor number to existing open file instance

* dup() returns the lowest numbered file descriptor number that is not
currently open in this process to something — just like open() does

* dup2() instead uses the specified newfd file descriptor number

—if newfd is already open, it is automatically closed first

* On return, both old and new file descriptors refer to the same shared open

file table entry

COMP 321

Copyright © 2026 David B. Johnson

Page 18

18




Indexed by fd

5 W NN -, O

The Kernel Data Structures — Doing dup(0)

File Descriptor Table

(one table per process)

Open File Table
(shared by all process)

N

NULL \

COMP 321

current fd offset
open fd flags

refcou V

protection & type
/ uid & gid

Copyright © 2026 David B. Johnson

v-node Table
(shared by all process)

inode number 78
file size

refcount =1

Page 19

19
The Kernel Data Structures — Doing dup(0)
File Descriptor Table Open File Table v-node Table
(one table per process) (shared by all process) (shared by all process)
0 .
- current fd offset protection & type
>1 ~ / open fd flags / uid & gid
= refcouy inode number 78
g 2 L >< S
Pl file size
23 /\ refcount =1
4 NULL
COMP 321 Copyright © 2026 David B. Johnson Page 20
20

10



Example: Using dup() or dup2() in the Shell

Redirecting standard output (e.g., command > file) the unsafe way

close(STDOUT_FILENO);
open(file, O_WRONLY);
* Doing open() will pick the lowest unused descriptor number, which here
should be STDOUT_FILENO

* But for a time, you have no open standard output file!

Doing it the correct, safe way

newfd = open(file, O_WRONLY);
dup2(newfd, STDOUT_FILENO);
close(newfd);

* dup2() closes old STDOUT_FILENO; then we close unneeded newfd

COMP 321 Copyright © 2026 David B. Johnson Page 21

21
Summary: Kernel File Descriptor Data Structures
File descriptor table for each process (e.g., in the process’s PCB)
* An array, indexed by the fd number (which are small integers)
* Each entry is a pointer to the open file table entry for that open file
* Oris NULL if that fd is not open now in this process
Open file table, shared by all processes
* A new one only for each independent open (or creat, etc.)
* Remembers current offset position and flags (i.e., O_RDONLY, O_TRUNC, etc.)
* And a pointer to the vnode table entry for the file (i.e., object) that is open
vnode table, shared by all processes
* Remembers a copy of control state information (i.e., metadata) for that file
COMP 321 Copyright © 2026 David B. Johnson Page 22
22

11



Summary: Creating a New fd Based on Existing fd

The new fd shares the open file table entry with the original fd

* Example: fork() creating each fd in the child based on existing fd in the parent

* Example: dup() or dup2() creating a new fd in this process based on the
specified existing fd also in this process

* The new fd shares the existing open file table entry with the existing fd
* The existing fd already has some position (i.e., offset) within the file

— Might be at any position, depending on what |I/O has already been done
on that existing fd

* The existing fd has existing flags (e.g., O_RDONLY, O_TRUNC, etc.)
— And creating the new fd has no way to specify then any new/different flags
* The new fd, based on this existing fd, thus shares all of this

COMP 321 Copyright © 2026 David B. Johnson Page 23

23
Summary: A New Independent Open
The new fd must also create a new open file table entry
* Example: a new call to open (or creat, etc.)
* The new open may use any (different) flags (e.g., O_RDWR, O_TRUNC, etc.)
* Kernel thus must create a new open file table to remember those new flags
* The position in the open file is also thus not shared
— Can’t be shared since the open file table entry thus can’t be shared
— But also makes sense not to share the position
o this was a new independent open
o and any other existing (independent) open fds are thus unrelated and
wouldn’t expect unrelated sharing of the open file position
COMP 321 Copyright © 2026 David B. Johnson Page 24
24

12



