
1

Copyright © 2026 David B. JohnsonCOMP 321 Page 1

System-Level I/O:
File Descriptor State Sharing

COMP 321

Dave Johnson

Copyright © 2026 David B. JohnsonCOMP 321 Page 2

Consider the Following Example
We compile the source file “abc.c” to make the program “abc”

int main()
{

write(1, "ABCDEFGHIJKLMNOPQRSTUVWXYZ\n", 27);
return 0;

}

And we compile the source file “123.c” to make the program “123”
int main()
{

write(1, "0123456789\n", 11);
return 0;

}

1

2

2

Copyright © 2026 David B. JohnsonCOMP 321 Page 3

Consider the Following Example
Now suppose we put the following 2 commands in a shell script file “doit.sh”

./abc

./123

What if we now run the command?
$ sh doit.sh

What we see on the screen is
ABCDEFGHIJKLMNOPQRSTUVWXYZ\n0123456789\n

Which looks like this on the screen
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

Copyright © 2026 David B. JohnsonCOMP 321 Page 4

Now Consider the Following Further Example
What if we now run the command?

$ sh doit.sh > OUT

What we expect to see in the file OUT is

ABCDEFGHIJKLMNOPQRSTUVWXYZ\n0123456789\n

But with a “simplistic” implementation, what we’ll get in OUT is

0123456789\nLMNOPQRSTUVWXYZ\n

Let’s look at why . . .

3

4

3

Copyright © 2026 David B. JohnsonCOMP 321 Page 5

Analyzing This Example

Original shell process

Child shell process
to run doit.sh command

Child process to
run abc command

Child process to
run 123 command

• What is the child shell fd
offset at the time of this
first fork?

• What is the child shell fd
offset at the time of this
second fork?

• The child shell opens
“OUT”, and thus current
fd offset = 0

• Does fork() to run abc
• Does fork() to run 123

fork()

fork() fork()

Copyright © 2026 David B. JohnsonCOMP 321 Page 6

Reminder: The Current File Offset in an fd
Each open file descriptor has an associated offset (i.e., position) within the file
• The current file offset is initialized to 0 (i.e., the beginning of the file’s data)

when the file descriptor is opened (e.g., from open or creat)
• A single current fd offset is used jointly for both reading and writing this fd

‒ Any read from this fd advances the fd’s offset by the number of bytes
actually read

‒ Any write to this fd advances this same offset by the number of bytes
actually written

• Example: repeated reading from the file sequentially transfers each next part
of the file, until reaching the end of the file (as limited by the size of the file)

5

6

4

Copyright © 2026 David B. JohnsonCOMP 321 Page 7

Kernel File Descriptor Data Structures
In the kernel for each process (e.g., in the process’s PCB)
• An array, the file descriptor table for this process, indexed by the fd number

(which are small integers)
• Each entry is a pointer to the open file table entry for that open file
• Or is NULL if that fd is not open now in this process

In the kernel, shared by all processes, the system-wide open file table
• Remembers current offset position and flags (i.e., O_RDONLY, O_TRUNC, etc.)
• And a pointer to the vnode table entry for the file (i.e., object) that is open

In the kernel, shared by all processes, the system-wide vnode table
• Remembers a copy of control state information (i.e., metadata) for that file

Copyright © 2026 David B. JohnsonCOMP 321 Page 8

Independent File Opens vs. Shared fd State
Only one entry in the vnode table for each file (or other type of object)
• No matter how many times that file is open, and
• No matter how it was opened and by which process

Each independent open (or creat, etc.) results in a new open file table entry
• And thus an independent offset (i.e., position) in that open file
• And a new set of remembered flags (e.g., O_RDONLY, O_TRUNC, etc.)
• All point to the same entry in the vnode table

Creating a new fd from some existing fd shares existing open file table entry
• Thus shares the open file offset and open file flags

7

8

5

Copyright © 2026 David B. JohnsonCOMP 321 Page 9

Kernel File Descriptor Data Structures

NULL

...

NULL

current fd offset
open fd flags
refcount = 1

current fd offset
open fd flags
refcount = 1

current fd offset
open fd flags
refcount = 1

protection & type
uid & gid

inode number 42
file size

refcount = 2

protection & type
uid & gid

inode number 78
file size

refcount = 1

File Descriptor Table
(one table per process)

Open File Table
(shared by all process)

vnode Table
(shared by all process)

0

1

2

3

4

...
In

de
xe

d
by

 fd

Copyright © 2026 David B. JohnsonCOMP 321 Page 10

Aside: What Is an inode and What Is a vnode?
Unix/Linux supports many different types of file systems

Each has an on-disk data structure for each file known as an inode
• Short for “index node” since it provides (among other information) an “index”

of which “blocks” of disk space store each part of the file’s data
• We’ll look more at inodes later when we look at file systems

A vnode is an in-memory data structure for a file, with two purposes
• Remembers in memory a copy of the inode information from disk for that file
• Provides a “wrapper” layer over the inode information in memory

‒ Most of the kernel treats all vnodes the same (a “virtual inode”)
‒ And the differences between the inode format for one type of file system

and another are handled all together through this “wrapper”

9

10

6

Copyright © 2026 David B. JohnsonCOMP 321 Page 11

Again, Analyzing This Example

Original shell process

Child shell process
to run doit.sh command

Child process to
run abc command

Child process to
run 123 command

• What is the child shell fd
offset at the time of this
first fork?

• What is the child shell fd
offset at the time of this
second fork?

• The child shell opens
“OUT”, and thus current
fd offset = 0

• Does fork() to run abc
• Does fork() to run 123

fork()

fork() fork()

Copyright © 2026 David B. JohnsonCOMP 321 Page 12

How it Really Works

Original shell process

Child shell process
to run doit.sh command

Child process to
run abc command

Child process to
run 123 command

• The new abc child shares
this open file table entry

• The child write() moves the
offset forward by 27
(number of bytes written)

• New 123 child also shares
this open file table
entry, so its new write()
starts at that position

• The child shell opens
“OUT”, and thus current
fd offset = 0

• Does fork() to run abc
• Does fork() to run 123

fork()

fork() fork()

11

12

7

Copyright © 2026 David B. JohnsonCOMP 321 Page 13

Instead, With a “Simplistic” Implementation
If the current offset was not shared across the fork()
• The abc child would start writing at offset 0, copied from its parent like the

rest of its address space
• When the abc child exits, any changes to the offset would be thrown away

with the rest of that process’s address space
• The 123 child would thus start also at offset 0, copied from its parent like the

rest of its address space

So we’d (incorrectly) end up with the following in the file OUT

0123456789\nLMNOPQRSTUVWXYZ\n

123’s write() incorrectly starts at offset 0

Copyright © 2026 David B. JohnsonCOMP 321 Page 14

Again, With the Correct Implementation
Because the current offset is shared across the fork()
• The abc child starts writing at offset 0, since that is the current shared offset

(the shell hasn’t written to that fd after opening it)
• When the abc child exits, its address space is thrown away, but the shared

offset for that file descriptor remains in the shared open file table entry
• The 123 child thus starts at the same offset that the abc child was at when it

completed, since that offset is still in the open file table entry

So we’d correctly end up with the following in the file OUT

ABCDEFGHIJKLMNOPQRSTUVWXYZ\n0123456789\n

123’s write() correctly starts at the shared offset position

13

14

8

Copyright © 2026 David B. JohnsonCOMP 321 Page 15

Summary: Handling File Descriptors During a fork()
The kernel copies the parent process’s entire address space to create the child’s

In addition, the kernel effectively “copies” the parent PCB file descriptor table
• Each entry in this array is either NULL or is a pointer to the corresponding open

file table entry
• Copy each entry (i.e., each pointer) to corresponding entry in child’s PCB
• And, if not equal to NULL, increase the reference count on the corresponding

open file table entry
‒ This open file table entry is shared between the parent and the child

Copyright © 2026 David B. JohnsonCOMP 321 Page 16

Kernel File Data Structures Before the Fork

...

current fd offset
open fd flags
refcount = 1

current fd offset
open fd flags
refcount = 1

current fd offset
open fd flags
refcount = 1

protection & type
uid & gid

inode number 42
file size

refcount = 2

protection & type
uid & gid

inode number 78
file size

refcount = 1

File Descriptor Table
(for parent process)

Open File Table
(shared by all process)

v-node Table
(shared by all process)

0
1
2

In
de

xe
d

by
 fd

15

16

9

Copyright © 2026 David B. JohnsonCOMP 321 Page 17

current fd offset
open fd flags
refcount = 1

current fd offset
open fd flags
refcount = 1

current fd offset
open fd flags
refcount = 1

Kernel File Data Structures After the Fork

...

current fd offset
open fd flags
refcount = 2

current fd offset
open fd flags
refcount = 2

current fd offset
open fd flags
refcount = 2

protection & type
uid & gid

inode number 42
file size

refcount = 2

protection & type
uid & gid

inode number 78
file size

refcount = 1

File Descriptor Table
(for parent process)

Open File Table
(shared by all process)

v-node Table
(shared by all process)

0
1
2

In
de

xe
d

by
 fd

...

(for child process)
0
1
2

In
de

xe
d

by
 fd

Copyright © 2026 David B. JohnsonCOMP 321 Page 18

Assigns a new (additional) descriptor number to existing open file instance
• dup() returns the lowest numbered file descriptor number that is not

currently open in this process to something – just like open() does
• dup2() instead uses the specified newfd file descriptor number

‒ if newfd is already open, it is automatically closed first
• On return, both old and new file descriptors refer to the same shared open

file table entry

Duplicating a File Descriptor within a Process

int dup(int oldfd);
int dup2(int oldfd, int newfd);

17

18

10

Copyright © 2026 David B. JohnsonCOMP 321 Page 19

The Kernel Data Structures – Doing dup(0)

...

current fd offset
open fd flags
refcount = 1

protection & type
uid & gid

inode number 78
file size

refcount = 1

File Descriptor Table
(one table per process)

Open File Table
(shared by all process)

v-node Table
(shared by all process)

0

1

2

3

4

...
In

de
xe

d
by

 fd

NULL

NULL ...

...

Copyright © 2026 David B. JohnsonCOMP 321 Page 20

The Kernel Data Structures – Doing dup(0)

...

current fd offset
open fd flags
refcount = 1

protection & type
uid & gid

inode number 78
file size

refcount = 1

File Descriptor Table
(one table per process)

Open File Table
(shared by all process)

v-node Table
(shared by all process)

0

1

2

3

4

...
In

de
xe

d
by

 fd

NULL ...

...

current fd offset
open fd flags
refcount = 2

19

20

11

Copyright © 2026 David B. JohnsonCOMP 321 Page 21

Redirecting standard output (e.g., command > file) the unsafe way

close(STDOUT_FILENO);
open(file, O_WRONLY);

• Doing open() will pick the lowest unused descriptor number, which here
should be STDOUT_FILENO

• But for a time, you have no open standard output file!

Doing it the correct, safe way
newfd = open(file, O_WRONLY);
dup2(newfd, STDOUT_FILENO);
close(newfd);

• dup2() closes old STDOUT_FILENO; then we close unneeded newfd

Example: Using dup() or dup2() in the Shell

Copyright © 2026 David B. JohnsonCOMP 321 Page 22

Summary: Kernel File Descriptor Data Structures
File descriptor table for each process (e.g., in the process’s PCB)
• An array, indexed by the fd number (which are small integers)
• Each entry is a pointer to the open file table entry for that open file
• Or is NULL if that fd is not open now in this process

Open file table, shared by all processes
• A new one only for each independent open (or creat, etc.)
• Remembers current offset position and flags (i.e., O_RDONLY, O_TRUNC, etc.)
• And a pointer to the vnode table entry for the file (i.e., object) that is open

vnode table, shared by all processes
• Remembers a copy of control state information (i.e., metadata) for that file

21

22

12

Copyright © 2026 David B. JohnsonCOMP 321 Page 23

Summary: Creating a New fd Based on Existing fd
The new fd shares the open file table entry with the original fd
• Example: fork() creating each fd in the child based on existing fd in the parent
• Example: dup() or dup2() creating a new fd in this process based on the

specified existing fd also in this process
• The new fd shares the existing open file table entry with the existing fd
• The existing fd already has some position (i.e., offset) within the file

‒ Might be at any position, depending on what I/O has already been done
on that existing fd

• The existing fd has existing flags (e.g., O_RDONLY, O_TRUNC, etc.)
‒ And creating the new fd has no way to specify then any new/different flags

• The new fd, based on this existing fd, thus shares all of this

Copyright © 2026 David B. JohnsonCOMP 321 Page 24

Summary: A New Independent Open
The new fd must also create a new open file table entry
• Example: a new call to open (or creat, etc.)
• The new open may use any (different) flags (e.g., O_RDWR, O_TRUNC, etc.)
• Kernel thus must create a new open file table to remember those new flags
• The position in the open file is also thus not shared

‒ Can’t be shared since the open file table entry thus can’t be shared
‒ But also makes sense not to share the position

o this was a new independent open
o and any other existing (independent) open fds are thus unrelated and

wouldn’t expect unrelated sharing of the open file position

23

24

