
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Dynamic Memory Allocation:
Implicit Free Lists

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Keeping Track of the Available Free Blocks
Many design choices are possible, but mainly two general alternatives

• Explicit free list
‒ Basically, the same as any other linked list, with the usual kind

of pointer manipulations
‒ Entries on the list are the free blocks themselves
‒ Each free block points to (i.e., contains a pointer to) the next free block

• Implicit free list
‒ No actual pointers used to make the list
‒ Each block implicitly “points to” next block, both free and allocated blocks
‒ Much easier to describe and to implement than an explicit free list
‒ We’ll start with the idea of an implicit free list

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Implicit Free List: The Basic Idea
The heap itself acts as the free list, with no pointers needed within the list

• Each block contains the size of the block and its status (allocated vs. free)

• To traverse the free list, start at the beginning address of the heap
• Walk forward block by block by adding the size of the current block

‒ Ignore allocated blocks and just go on to the next block

0x100
free

0x140
free

0x110
alloc

0x90
alloc

0x160
free

0x150
alloc

0x90
free

0x150
free

0x100
alloc

0x
20

00

0x
21

00

0x
22

40

0x
23

50

0x
23

E0

0x
25

40

0x
26

90

0x
27

20

0x
28

70

. . .

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Where in the Block to Put the Size and Status?
When allocating a new block
• Increase the requested size by the extra space needed to hold the block’s size

and its allocation status
‒ Actually allocate this new, larger size, not just the requested size

• Record the block size in the block as the size including this extra space
• And mark the block status there as allocated

When freeing a block
• Simplest: Just change the status in the block to show that the block is free
• The block size is already recorded there from when the block was allocated
• And there is enough space in the block to hold this information, since space

was made for it when the block was allocated (the increased size)

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Where in the Block to Put the Size and Status?
Where within the block should this extra information be placed?
• Best place is at the beginning of the block

block size
allocation status

requested
allocation size

extra space
Return this pointer from malloc()

beginning of allocated space

And on a free(), subtract the size
of the extra information to find this

information from just the pointer
passed to free() !

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

How to Represent the Block Size and Status?
The malloc() alignment requirement creates a convenient solution
• The status only needs 1 bit to represent it (e.g., 0 = free, 1 = allocated)
• And if the alignment requirement is for at least at a multiple of 2

‒ The aligned (rounded up) size will always be an even number
‒ Meaning the least significant bit will always be a 0

• So we can “borrow” this least significant bit to store the allocation status bit
‒ Store the value (aligned_size | status) // merges in the status bit
‒ To get the status (stored_value & 1) // extracts just the status bit
‒ To get the size (stored_value & ~1) // takes away the status bit

• So storing the block status takes effectively zero space!

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

The Format of a Block
The block size and status together is often referred to as the block’s “header”
• One word – the size needed to represent the largest supported block size

‒ e.g., unsigned int, or unsigned long, or size_t
• With the least significant bit of this word “borrowed” to store the status

block size with status

requested
allocation size

block headerReturn this pointer from malloc()
beginning of allocated space

And on a free(), subtract the size of
the header to find the header from

just the pointer passed to free() !

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

When Allocating a Block
Find the free block to use (e.g., first fit, next fit, or best fit), but then what?

• Change the allocated status to show the block is allocated

• Then, depending on the size of the block being used and the size requested
‒ use the whole block, or
‒ split the block and use part of it, and leave the rest as a (smaller) free

block, with its own new header to specify its new size and status

• Example: If the “leftover” size would be smaller than a header
‒ Then can’t leave the rest as a free block, so use the whole block

• Example: If the “leftover” size is big enough but is still fairly small
‒ Then can optionally choose to use the whole block and not leave anything

• Otherwise, split the block and leave the rest as a free block

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Example: Splitting a Block (header size = 4)
• Requested size = decimal 500 = 0x190
• Existing size (including header) = decimal 800 = 0x320

800 = 0x320 500 + 4 + 1 = 0x1F9

800 – 504 = 0x128

size 800, with
status = 0

size 500, plus
header size 4,
with status = 1

remaining size, with
status = 0

the requested
500 = 0x190

bytes

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

When Freeing a Block
Change its status to free (e.g., change bit from 1 to 0), but then what?

• With an implicit free list, just changing its status to free adds it to the free list

• Then, if the preceding block and/or following block are also free, can
“coalesce” them together into a single, larger free block

‒ Checking the status of the following block is easy, since it’s header is easy
to find – the next word following the end of this block

‒ Checking the status of the preceding block is much harder – traverse from
the beginning of the list to find the preceding block?

‒ A better solution: duplicate the header also at the end of the block,
referred to there as the “trailer”

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Example: Splitting a Block (with header and trailer)
• Requested size = decimal 500 = 0x190
• Existing size (including header and trailer) = decimal 800 = 0x320

800 = 0x320 500 + 8 + 1 = 0x1FD

800 – 508 = 0x124

size 800, with
status = 0

size 500, plus
header + trailer

size 8, with
status = 1

remaining size, with
status = 0

the requested
500 = 0x190

bytes

800 = 0x320

500 + 8 + 1 = 0x1FD

800 – 508 = 0x124

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Adding a Block Being Freed Back Into the Free List
To keep down external fragmentation, “coalesce” it with neighboring free blocks
• Now easy, with the header of following block and trailer of preceding block
• Consider the four possible cases for the block in memory before and after

Allocated

Allocated
freeing

Allocated

Allocated
Free

Allocated

Free
freeing

Allocated

Free

Free

Allocated
freeing

Free

Allocated

Free

Free
freeing

Free

Before …

After …

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Implicit Free List: Summary
Advantages
• Easy to implement, since no actual pointers need to be manipulated
• Allows efficient, constant time coalescing, with use of a header and a trailer

in every block (free and allocated blocks)
• Relatively space efficient, since no pointers need to be stored in each block

Disadvantages
• Allocation time can be linear in the number of blocks (the number of free and

allocated blocks), not just in the number of free blocks
• No real way to improve on that with an implicit free list

‒ Can’t excluded allocated blocks from the list
‒ Can’t control the order or segregation of the free list

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

Some Cautions in Using the malloc Package
• What happens if you write past the end of an allocated block?

‒ This overwrites control information that affects the rest of the free list
‒ Potentially overwrites the contents of allocated blocks in memory after that

• What happens if you free() a block that you had already earlier freed?
‒ The apparent preceding header and/or following footer are “wrong”, if the

earlier free() coalesced with blocks in memory then
‒ If the block now being free()d had been allocated after the earlier first free(),

then this second free() messes up this block’s state (and size)

These (and other similar) problems can be hard to debug
• These problems don’t generally show themselves when the real bug occurs
• But instead, e.g., on later use of other allocated blocks or later malloc() or free()

13

14

