
1

Copyright © 2026 David B. JohnsonCOMP 321 Page 1

Dynamic Memory Allocation:
Introduction

COMP 321

Dave Johnson

Copyright © 2026 David B. JohnsonCOMP 321 Page 2

A simplified example

int a;
int b = 2;

foo()
{

int c;
int d = 4;
foo()

}

Review: A Process Address Space

stack

heap

“bss”

data

text

c
d = 4

a

b = 2

CPU instructions

Initialized global/static

Uninitialized global/static

Allocated with malloc

grows down

grows up

foo
0

1

2

2

Copyright © 2026 David B. JohnsonCOMP 321 Page 3

int a;
int b = 2;

foo()
{

int c;
int d = 4;
if (a == 0) {

int e;
}
foo()

}

Storage Lifetimes for Different Variables

a and b exist for the lifetime of the program’s execution

c and d are created when foo begins execution and are
destroyed when foo returns

And a new c and d are created for each recursive call to foo

e is created only if these braces are entered and are
destroyed when those braces are left

Copyright © 2026 David B. JohnsonCOMP 321 Page 4

Dynamic Memory Allocation: malloc() and free()

Memory allocation whose lifetime is dynamic – until explicitly freed
• malloc() allocates “size” bytes of memory and returns a pointer to it

‒ You tell malloc() the size and it returns a pointer to the allocated memory
‒ Returns NULL in case of any error

• free() frees the dynamically allocated memory pointed to by “ptr”
‒ You tell free() a pointer to the memory to free, but it somehow knows all

on its own the size of the memory to free
‒ The memory must have been allocated by an earlier call to malloc() (or

related dynamic memory allocation procedures)

void *malloc(size_t size);
void free(void *ptr);

always check for this this!

3

4

3

Copyright © 2026 David B. JohnsonCOMP 321 Page 5

Dynamic Memory Allocation: realloc()

Changes the size of an existing dynamically allocated block of memory
• “size” is the new size you want, which may be larger or smaller than current
• Returns the address of the newly-sized block of memory

‒ The block may need to be moved, so returned address might not be “ptr”
‒ Returns NULL in case of any error

• As with free(), realloc() somehow knows the existing size of the memory
• The memory must have been allocated by an earlier call to malloc() (or related

dynamic memory allocation procedures)

void *realloc(void *ptr, size_t size);

always check for this this!

Copyright © 2026 David B. JohnsonCOMP 321 Page 6

A Simple malloc() and realloc() Example
int main() {

int *nums;

nums = malloc(5 * sizeof(int));
printf("nums = %p: ", nums);
for (int i = 0; i < 5; i++)

nums[i] = i * 10;

for (int i = 0; i < 5; i++)
printf("%02d ", nums[i]);

printf("\n");

nums = realloc(nums, 10 * sizeof(int));
printf("nums = %p: ", nums);
for (int i = 5; i < 10; i++)

nums[i] = i * 10;

for (int i = 0; i < 10; i++)
printf("%02d ", nums[i]);

printf("\n");

exit (0);
}

Output: nums = 0x4ef2a0: 00 10 20 30 40
nums = 0x4ef6d0: 00 10 20 30 40 50 60 70 80 90

5

5

5

10

10

10

5

0

The memory moved! 0x4ef6d0

5

6

4

Copyright © 2026 David B. JohnsonCOMP 321 Page 7

Dynamic Memory Allocation: calloc()

An alternative interface for dynamic memory allocation
• Allocates “nmemb” (number of members), each of size “size” bytes

‒ Basically, like allocating an array
‒ where each element in the array is of size “size” bytes
‒ and there are “nmemb” elements in the array
‒ Example: calloc(100, sizeof(int)) allocates an array of 100 ints

• Returns the address of the newly-sized block of memory
‒ Returns NULL in case of any error

void *calloc(size_t nmemb, size_t size);

always check for this this!

Copyright © 2026 David B. JohnsonCOMP 321 Page 8

The Initial Values of the Allocated Memory
For malloc()
• The allocated memory is uninitialized
• May contain any value – often not equal to 0

For realloc()
• The contents of the block is preserved, even if realloc() moves the block
• But if the block is larger, the additional new bytes at the end are uninitialized

For calloc()
• The allocated memory is all initialized to 0

7

8

5

Copyright © 2026 David B. JohnsonCOMP 321 Page 9

The Alignment of the Allocated Memory
The malloc package implementation ensures proper address alignment
• Some systems may require, e.g., an “int” to be on a multiple of 4 address

boundary, or a “long” or a “double” to be on a multiple of 8 address boundary
• To be useful, the malloc package needs to support that requirement

‒ But it doesn’t know what data type you are going to put in the memory
‒ So it ensures that the returned memory begins on an address boundary

suitably aligned for any type that fits into the requested size or less
‒ Generally, aligned on the system’s strictest address alignment requirement

For “regular” variables, the compiler and linker handle the alignment
• static/global variables
• automatic (stack) variables

Copyright © 2026 David B. JohnsonCOMP 321 Page 10

The Origins of the Unusual calloc() Interface
Why does the calloc() interface even exist, and where did it come from?
• It is completely redundant with malloc() – used together with, e.g., memset()
• Why is the interface “nmemb” and “size”, not just the product of those two?
• What does “c” in its name stand for?

‒ “c” for “count”, since only calloc() gives the count of members to allocate?
‒ “c” for “clear”, since only calloc() zeros out (clears) the memory?

This has always bugged me, so I decided to do some research . . .
• Back to the first C programming library supporting dynamic memory allocation
• “The Portable C Library (on UNIX)”, M.E. Lesk, Bell Labs, 1975
• Distributed with Version 6 Unix, the first Unix widely distributed outside AT&T

9

10

6

Copyright © 2026 David B. JohnsonCOMP 321 Page 11

From 1975

Copyright © 2026 David B. JohnsonCOMP 321 Page 12

Where Does the Memory Actually Come From?
The malloc package just hands out and keeps track of blocks of memory
• These procedures don’t “create” the memory

The original answer, the brk() kernel call (still used in some implementations)

• A process’s break marks the end of its heap = address of first byte beyond heap
• brk() sets the break address to “addr”
• sbrk() can move the break up or down, and returns the new break address

‒ Example: sbrk(0) returns the current break address
‒ Example: malloc() can call sbrk(4096) to get 4 kB more memory from the

operating system to then carve up for future malloc() requests as needed

int brk(void *addr);
void *sbrk(intptr_t increment); a library call that calls brk()

11

12

7

Copyright © 2026 David B. JohnsonCOMP 321 Page 13

Don’t Mix sbrk()/brk() Calls With malloc Package
The malloc package generally expects to manage the heap

• Uses sbrk() to get more total memory when needed

‒ Expects to manage all memory up to the break

• If you mix your own calls to sbrk()/brk()
with using malloc package, you may very
likely “confuse” malloc()

• The likely result would be your program crashes

‒ You end up overwriting malloc()’s bookkeeping

‒ And/or malloc() overwrites whatever you may put
in the memory you got from your own sbrk()/brk()

stack

heap

“bss”

data

text
0

the “break”

Copyright © 2026 David B. JohnsonCOMP 321 Page 14

A Strawman malloc Package Implementation
There are many things this strawman implementation doesn’t (fully) do
• Illustrates the malloc package interface and some use of sbrk()

void *calloc(size_t nmemb, size_t size) {
void *ptr = malloc(nmemb * size);
memset(ptr, 0, size);
return (ptr);

}

void *realloc(void *ptr, size_t size) {
void *new_ptr = malloc(size);
memcpy(new_ptr, ptr, size);
return (new_ptr);

}

void *malloc(size_t size) {
void *ptr = sbrk(0);
sbrk(size);
return (ptr);

}

void free(void *ptr) {
}

should really copy only for
length = min(size, existing size)

13

14

8

Copyright © 2026 David B. JohnsonCOMP 321 Page 15

Some Needed malloc Package Bookkeeping
Keeps track of allocated blocks
• At least so that it can know the size of the block on a future free() of it

Keeps track of free blocks (i.e., some kind of a free list)
• Memory that it is managing that isn’t in use for any current allocation

‒ Including memory returned from earlier free() calls so it can be reused
• When some new allocation request is made

‒ Which existing free block should be used (or which is best to use)?
‒ And how does the malloc package find that existing free block?

• When some existing allocated block is freed
‒ What to do with that block vs. other existing free blocks being managed?

Copyright © 2026 David B. JohnsonCOMP 321 Page 16

Allocated 4

Allocated 3

Internal fragmentation
• Unused space inside an existing allocated block

‒ Example: Allocated size was rounded up to
some required allocation granularity

‒ Example: Initially allocated more space than
needed in case the use needs to grow

External fragmentation
• Unusable space between allocated blocks

‒ Enough total space but no single contiguous
space is large enough for some new request

A Problem of Two Different Kinds

Allocated 5

Allocated 1

Allocated 2

15

16

9

Copyright © 2026 David B. JohnsonCOMP 321 Page 17

Some Dynamic Memory Allocator Metrics
Generally, want maximize dynamic memory allocator’s memory utilization
• That is, maximize total size of currently allocated blocks / total size of heap
• The total size of the heap must be at least the total size of the allocated blocks
• Would like the total heap size to be as close to that as possible

‒ Thus using (e.g., wasting) as little total additional memory as possible

Generally, want to maximize the rate at which package can process requests
• Some allocation requests (or frees) may be slower to process than others

‒ Example: more work to find a “good” free block to reuse on an allocation
‒ Example: some free requests may require more bookkeeping than others

• Would like to maximize the overall rate at which allocation/free can be handled

Copyright © 2026 David B. JohnsonCOMP 321 Page 18

Which Free Block to Use for Some New Request?
• first fit

‒ From beginning of list, use the first free block you find that is large enough
‒ Simplest, but tends to leave many “splinters” at the beginning of the list,

when taking the size needed and leaving the remainder of that block free
• next fit

‒ Like first fit, but begin the search in the list where previous search ended
‒ Can be faster than first fit, but studies show generally worse utilization

• best fit
‒ Check all free blocks and use the one that is the closest fit to needed
‒ That is, the smallest block ≥ the size needed for the new request
‒ Leaves the larger free blocks for later, when they might really be needed

17

18

10

Copyright © 2026 David B. JohnsonCOMP 321 Page 19

Adding a Block Being Freed Back Into the Free List
To keep down external fragmentation, “coalesce” it with neighboring free blocks
• Consider the four possible cases for the block in memory before and after

• How easy or hard to do in practice depends on how the bookkeeping is done

Allocated

Allocated
freeing

Allocated

Allocated
Free

Allocated

Free
freeing

Allocated

Free

Free

Allocated
freeing

Free

Allocated

Free

Free
freeing

Free

Before …

After …

Copyright © 2026 David B. JohnsonCOMP 321 Page 20

Does free() Ever Give Memory Back to the Kernel?
As memory is freed, it is difficult for malloc package give memory back to OS

• As more total memory is needed, malloc package can get it from the kernel

• But it is difficult/impossible to give memory back to the kernel
‒ malloc package can call brk(addr) to trim the heap size down do addr
‒ But this can only be done if all memory at addresses ≥ addr is all free
‒ and is not needed as part of the malloc package’s internal bookkeeping

• This could occur but may not be very likely
‒ Far easier to not give the memory back to the kernel
‒ and continue instead to manage it for future allocation requests

• And all memory is automatically freed when the process terminates

19

20

11

Copyright © 2026 David B. JohnsonCOMP 321 Page 21

Why Do We Need an Explicit free() Operation?
Some languages (e.g., Java) do not need explicit free operation

• In such languages, the effect of free() is taken care of automatically
‒ When a block of memory is no longer in use, it is automatically freed

• But in C, how can we tell that a block of memory is no longer in use?
‒ Any pointer that exists and points into it means that block is still in use
‒ In C, any word in memory (or in a register) with such a value could be (or

might not be) a pointer
‒ There’s no way to reliably tell if any value is really a pointer to (or points

into) some block of memory
‒ We cannot reliably tell if any a pointer for any block of memory exists and

so can’t tell when the block can be freed

Copyright © 2026 David B. JohnsonCOMP 321 Page 22

Don’t Use Dynamic Allocation When Not Needed!
Use dynamic memory allocation only when you really need to

• The malloc package requires a lot of extra work (i.e., its slow!)
‒ Includes searching for a suitable block of memory, doing bookkeeping to

account for its allocation and later more bookkeeping on freeing it
‒ Just declaring the variable sets aside space at compile/link time, or just

decrements stack pointer by the size for variable on the stack

• Using malloc package will “leak” memory if you sometimes forget to free()
‒ Automatic (stack) variables are automatically deallocated
‒ When the procedure it was declaredin returns (or the pair of braces it was

declared in completes), the memory is automatically freed
‒ You can’t “forget” to free the memory

21

22

12

Copyright © 2026 David B. JohnsonCOMP 321 Page 23

When Do You Need Dynamic Memory Allocation?
The only reasons you should use dynamic memory allocation

• If you need storage lifetime different than static/global or automatic (stack)
‒ Example: You need some memory just during one phase of the program

execution, not aligned with simple procedure call nesting
‒ This is the most important reason

• If you don’t know the size of what you need until runtime
‒ You don’t know what you need know to just declare it

• If you don’t know the number of them you need until runtime
‒ C variable-length arrays can be used in some cases for this, but not all
‒ Example: No way to know the maximum size of the stack

Do not malloc() something just because it is “big” or is a struct or array, etc.

23

