Dynamic Memory Allocation:

Introduction

COMP 321

Dave Johnson

COMP 321 Copyright © 2026 David B. Johnson

% RICE

Page 1

Review: A Process Address Space

A simplified example
C

int a; d=4 stack growsldown
intb=2; v
foo() ?
{ Allocated with malloc heap 8rowsup

intc; Uninitialized global/static | a “bss”

intd=4; N .

Initialized global/static b=2 data

foo()

} CPU instructions foo text

COMP 321 Copyright © 2026 David B. Johnson

Page 2

Storage Lifetimes for Different Variables

int a; = : o :
intb =2 1 @ and b exist for the lifetime of the program’s execution
i =2;
foo()
{ ¢ and d are created when foo begins execution and are
int ¢; =— destroyed when foo returns
intd =4;
if (@==0){ e is created only if these braces are entered and are
int e; 4‘ destroyed when those braces are left
}
foo()] And a new c and d are created for each recursive call to foo
}
COMP 321 Copyright © 2026 David B. Johnson Page 3

Dynamic Memory Allocation: malloc() and free()

void *malloc(size_t size);
void free(void *ptr);

Memory allocation whose lifetime is dynamic — until explicitly freed

* malloc() allocates “size” bytes of memory and returns a pointer to it
—You tell malloc() the size and it returns a pointer to the allocated memory
—Returns NULL in case of any error <«— always check for this this!

* free() frees the dynamically allocated memory pointed to by “ptr”

—You tell free() a pointer to the memory to free, but it somehow knows all
on its own the size of the memory to free

—The memory must have been allocated by an earlier call to malloc() (or
related dynamic memory allocation procedures)

COMP 321 Copyright © 2026 David B. Johnson Page 4

Dynamic Memory Allocation: realloc()

void *realloc(void *ptr, size_t size);

Changes the size of an existing dynamically allocated block of memory

* “size” is the new size you want, which may be larger or smaller than current

* Returns the address of the newly-sized block of memory
—The block may need to be moved, so returned address might not be “ptr”
—Returns NULL in case of any error <«— always check for this this!

* As with free(), realloc() somehow knows the existing size of the memory

* The memory must have been allocated by an earlier call to malloc() (or related
dynamic memory allocation procedures)

COMP 321 Copyright © 2026 David B. Johnson Page 5

A Simple malloc() and realloc() Example

int main() { nums = realloc(nums, 10 * sizeof(int));
int *nums; printf("nums = %p: ", nums);
for (inti=5;i<10;i++)
nums = malloc(5 * sizeof(int)); numsl[i] =i * 10;
printf("nums = %p: ", nums);
for (inti=0;i<5;i++) for (inti=0;i<10;i++)
numsli] =i * 10; printf("%02d ", numsl[i]);

printf("\n");
for (inti=0;i<5;i++)
printf("%02d ", nums[i]); exit (0);
printf("\n"); }

Output: nums = 0x4ef2a0: 00 10 20 30 40

The memory moved! |==——" nums = 0x4ef6d0: 00 10 20 30 40 50 60 70 80 90

COMP 321 Copyright © 2026 David B. Johnson Page 6

Dynamic Memory Allocation: calloc()

void *calloc(size_t nmemb, size_t size);

An alternative interface for dynamic memory allocation
* Allocates “nmemb” (number of members), each of size “size” bytes
— Basically, like allocating an array
—where each element in the array is of size “size” bytes
—and there are “nmemb” elements in the array
— Example: calloc(100, sizeof(int)) allocates an array of 100 ints
* Returns the address of the newly-sized block of memory
—Returns NULL in case of any error <«— always check for this this!

COMP 321 Copyright © 2026 David B. Johnson Page 7

The Initial Values of the Allocated Memory

For malloc()
* The allocated memory is uninitialized
* May contain any value — often not equal to 0

For realloc()
* The contents of the block is preserved, even if realloc() moves the block
* But if the block is larger, the additional new bytes at the end are uninitialized

For calloc()
* The allocated memory is all initialized to 0

COMP 321 Copyright © 2026 David B. Johnson Page 8

The Alignment of the Allocated Memory

The malloc package implementation ensures proper address alignment

* Some systems may require, e.g., an “int” to be on a multiple of 4 address
boundary, or a “long” or a “double” to be on a multiple of 8 address boundary

* To be useful, the malloc package needs to support that requirement
—But it doesn’t know what data type you are going to put in the memory

—So it ensures that the returned memory begins on an address boundary
suitably aligned for any type that fits into the requested size or less

— Generally, aligned on the system’s strictest address alignment requirement

For “regular” variables, the compiler and linker handle the alignment
* static/global variables
* automatic (stack) variables

COMP 321 Copyright © 2026 David B. Johnson Page 9

The Origins of the Unusual calloc() Interface

Why does the calloc() interface even exist, and where did it come from?
* It is completely redundant with malloc() — used together with, e.g., memset()
* Why is the interface “nmemb” and “size”, not just the product of those two?
* What does “c” in its name stand for?
— “c” for “count”, since only calloc() gives the count of members to allocate?
— “c” for “clear”, since only calloc() zeros out (clears) the memory?

This has always bugged me, so | decided to do some research ...

* Back to the first C programming library supporting dynamic memory allocation
* “The Portable C Library (on UNIX)”, M.E. Lesk, Bell Labs, 1975

* Distributed with Version 6 Unix, the first Unix widely distributed outside AT&T

COMP 321 Copyright © 2026 David B. Johnson Page 10

10

The Portable C Library (on UNIX) * From 1975

M. E. Lesk
1. INTRODUCTION

The C language [1] now exists on three operating systems. A set of library routines common to PDP

11 UNIX. Honeywell 6000 GCoS. and 1BM 270 0S has heen nrovided to improve nr nortahilitvy Thig
11 ulNia, Oneywen: Ovvv GCOS, and ioM 5/vV OS5 nas 5eén proviaGea 1o improve pr 1 poriasuity. 11is

(]

memorandum describes the UNIX implementation of the portable routines.

CALLOC (n, sizeof(object))

Calloc returns a pointer to new storage, allocated in space obtained from the operating system. The space
obtained is well enough aligned for any use, i.e. for a double-precision number. Enough space to store n
objects of the size indicated by the second argument is provided. The sizeof is executed at compile time; it
is not in the library. A returned value of -1 indicates failure to obtain space.

CFREE (ptr, n, sizeof(*ptr))

Cfree returns to the operating system memory starting at p#r and extending for » units of the size given by
the third argument. The space should have been obtained through calloc. On UNIX you can only return the
exact amount of space obtained by calloc; the second and third arguments are ignored.

COMP 321 Copyright © 2026 David B. Johnson Page 11

11

Where Does the Memory Actually Come From?

The malloc package just hands out and keeps track of blocks of memory
* These procedures don’t “create” the memory

The original answer, the brk() kernel call (still used in some implementations)

int brk(void *addr);
void *sbrk(intptr_t increment); -% a library call that calls brk()

* A process’s break marks the end of its heap = address of first byte beyond heap

* brk() sets the break address to “addr”

* sbrk() can move the break up or down, and returns the new break address
— Example: sbrk(0) returns the current break address

— Example: malloc() can call sbrk(4096) to get 4 kB more memory from the

operating system to then carve up for future malloc() requests as needed
COMP 321 Copyright © 2026 David B. Johnson Page 12

12

Don’t Mix sbrk()/brk() Calls With malloc Package

The malloc package generally expects to manage the heap

* Uses sbrk() to get more total memory when needed stack

— Expects to manage all memory up to the break

* If you mix your own calls to sbrk()/brk()

with using malloc package, you may very the “break” —

likely “confuse” malloc() heap
* The likely result would be your program crashes “bss”
—You end up overwriting malloc()’s bookkeeping
— And/or malloc() overwrites whatever you may put data
in the memory you got from your own sbrk()/brk() text
COMP 321 Copyright © 2026 David B. Johnson Page 13

13

A Strawman malloc Package Implementation

There are many things this strawman implementation doesn’t (fully) do
* lllustrates the malloc package interface and some use of sbrk()

void *malloc(size_t size) { void *calloc(size_t nmemb, size_t size) {
void *ptr = sbrk(0); void *ptr = malloc(nmemb * size);
sbrk(size); memset(ptr, 0, size);
return (ptr); return (ptr);

} }

void free(void *ptr) { void *realloc(void *ptr, size_t size) {

} void *new_ptr = malloc(size);

memcpy(new_ptr, ptr, size);
should really copy only for return (new_ptr);
length = min(size, existing size) }
COMP 321 Copyright © 2026 David B. Johnson Page 14

14

Some Needed malloc Package Bookkeeping

Keeps track of allocated blocks
* At least so that it can know the size of the block on a future free() of it

Keeps track of free blocks (i.e., some kind of a free list)
* Memory that it is managing that isn’t in use for any current allocation
—Including memory returned from earlier free() calls so it can be reused
* When some new allocation request is made
— Which existing free block should be used (or which is best to use)?
—And how does the malloc package find that existing free block?
* When some existing allocated block is freed
—What to do with that block vs. other existing free blocks being managed?

COMP 321 Copyright © 2026 David B. Johnson Page 15

15

A Problem of Two Different Kinds

Internal fragmentation

* Unused space inside an existing allocated block

— Example: Allocated size was rounded up to Allocated 5
some required allocation granularity

— Example: Initially allocated more space than

: Allocated 4
needed in case the use needs to grow ocated
External fragmentation Allocated 3
* Unusable space between allocated blocks
— Enough total space but no single contiguous
space is large enough for some new request
Allocated 1

COMP 321 Copyright © 2026 David B. Johnson Page 16

16

Some Dynamic Memory Allocator Metrics

Generally, want maximize dynamic memory allocator’s memory utilization
* That is, maximize total size of currently allocated blocks / total size of heap
* The total size of the heap must be at least the total size of the allocated blocks
* Would like the total heap size to be as close to that as possible
—Thus using (e.g., wasting) as little total additional memory as possible

Generally, want to maximize the rate at which package can process requests
* Some allocation requests (or frees) may be slower to process than others
— Example: more work to find a “good” free block to reuse on an allocation
— Example: some free requests may require more bookkeeping than others
* Would like to maximize the overall rate at which allocation/free can be handled

COMP 321 Copyright © 2026 David B. Johnson Page 17

17

Which Free Block to Use for Some New Request?

* first fit
— From beginning of list, use the first free block you find that is large enough

—Simplest, but tends to leave many “splinters” at the beginning of the list,
when taking the size needed and leaving the remainder of that block free

* next fit
— Like first fit, but begin the search in the list where previous search ended
— Can be faster than first fit, but studies show generally worse utilization

* best fit
— Check all free blocks and use the one that is the closest fit to needed
—That is, the smallest block > the size needed for the new request
— Leaves the larger free blocks for later, when they might really be needed

COMP 321 Copyright © 2026 David B. Johnson Page 18

18

Adding a Block Being Freed Back Into the Free List

To keep down external fragmentation, “coalesce” it with neighboring free blocks

* Consider the four possible cases for the block in memory before and after

Before ...

After ...

Allocated

freeing

Allocated

Allocated

Free

Allocated

Allocated Free Free
freeing freeing freeing
Free Allocated Free
Allocated
Free
Free
A Allocated

* How easy or hard to do in practice depends on how the bookkeeping is done

COMP 321

Copyright © 2026 David B. Johnson

Page 19

19

COMP 321

Copyright © 2026 David B. Johnson

* But it is difficult/impossible to give memory back to the kernel
—malloc package can call brk(addr) to trim the heap size down do addr
— But this can only be done if all memory at addresses > addr is all free
—and is not needed as part of the malloc package’s internal bookkeeping
* This could occur but may not be very likely
— Far easier to not give the memory back to the kernel

Does free() Ever Give Memory Back to the Kernel?

As memory is freed, it is difficult for malloc package give memory back to OS

* As more total memory is needed, malloc package can get it from the kernel

—and continue instead to manage it for future allocation requests
* And all memory is automatically freed when the process terminates

Page 20

20

10

Why Do We Need an Explicit free() Operation?

Some languages (e.g., Java) do not need explicit free operation

* In such languages, the effect of free() is taken care of automatically
—When a block of memory is no longer in use, it is automatically freed

* But in C, how can we tell that a block of memory is no longer in use?
— Any pointer that exists and points into it means that block is still in use
—In C, any word in memory (or in a register) with such a value could be (or
might not be) a pointer

—There’s no way to reliably tell if any value is really a pointer to (or points
into) some block of memory

— We cannot reliably tell if any a pointer for any block of memory exists and
so can’t tell when the block can be freed

COMP 321 Copyright © 2026 David B. Johnson Page 21

21

Don’t Use Dynamic Allocation When Not Needed!

Use dynamic memory allocation only when you really need to

* The malloc package requires a lot of extra work (i.e., its slow!)

—Includes searching for a suitable block of memory, doing bookkeeping to
account for its allocation and later more bookkeeping on freeing it

—Just declaring the variable sets aside space at compile/link time, or just
decrements stack pointer by the size for variable on the stack
* Using malloc package will “leak” memory if you sometimes forget to free()
— Automatic (stack) variables are automatically deallocated

—When the procedure it was declaredin returns (or the pair of braces it was
declared in completes), the memory is automatically freed

—You can’t “forget” to free the memory

COMP 321 Copyright © 2026 David B. Johnson Page 22

22

11

When Do You Need Dynamic Memory Allocation?

The only reasons you should use dynamic memory allocation

* If you need storage lifetime different than static/global or automatic (stack)

— Example: You need some memory just during one phase of the program
execution, not aligned with simple procedure call nesting

—This is the most important reason
* If you don’t know the size of what you need until runtime
—You don’t know what you need know to just declare it
* If you don’t know the number of them you need until runtime
— Cvariable-length arrays can be used in some cases for this, but not all
— Example: No way to know the maximum size of the stack

Do not malloc() something just because it is “big” or is a struct or array, etc.

COMP 321 Copyright © 2026 David B. Johnson Page 23

23

12

