
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Dynamic Memory Allocation:
Explicit Free Lists

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Why an Explicit Free List?
Problems with implicit free lists
• Allocation time can be linear in the number of blocks (the number of free and

allocated blocks), not just in the number of free blocks
• No real way to improve on that with an implicit free list

‒ Can’t excluded allocated blocks from the list
‒ Can’t control the order or segregation of the free list

• The fundamental problem
‒ The heap is the free list is the heap ...
‒ This includes all allocated blocks as well as all free blocks

Creating and using an explicit free list lets us overcome this

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Basic Idea of an Explicit Free List?
The free list should contain only free blocks
• All blocks still contain header and trailer with size and allocation status
• No change to the format of an allocated block
• Each free block now also needs to contain pointer(s) to place it in the free list

block size with status

requested
allocation size
(and padding)

block header

block size with status block trailer

Allocated Block
block size with status

block size with status

Free Block
block header

block trailer

linked list
pointers

(and padding)

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

The Free Space in a Free Block Stores the Pointer(s)
The linked list pointer(s) take up no space to store
• A free block is by definition free – currently unused space
• Borrow some of that free space to store the pointer(s) for the free list

A simple example

block size with status

Free Block

block size with status

Free Block

block size with status

Free Block

“next” pointer“next” pointer “next” pointer
block size with statusblock size with status block size with status

. . .

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

The Minimum Size of a Block
An allocated block must be big enough to represent itself when it is a free block
• Meaning it must have room as a free block to hold the list pointer(s)

‒ That extra room is not needed when it is an allocated block
• The minimum free block that can be represented contains

‒ The free block’s header
‒ The free block’s trailer
‒ The free block’s free list pointer(s)

• When allocating a block, must add extra padding inside the allocated block (in
addition to padding for alignment) to make sure the allocated block is at least
this minimum size

‒ (May increase internal fragmentation)

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

The Order of the Free List
Many list ordering choices are possible, including

• FIFO – a freed block won’t be reused until much later

• LIFO – a freed block will be reused on next allocation (depending on size)

• Ordered by addresses

• Ordered by size
‒ ascending (increasing size) order
‒ descending (decreasing size) order

The order of free blocks in the free list need not be the order in the heap

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

The Structure of the Free List
Many different list structures are possible for a “linked list”
• Singly linked or doubly linked
• Circular or not circular

Doubly linked circular is a good choice
• Can add or remove in constant time, regardless of the position in the list
• Example: for coalescing when freeing a block

‒ May be able to merge yourself onto the previous block
in place without removing it from the free list

‒ But may need to remove following block from the
free list, and you didn’t find it by traversing the list

Free

Free
freeing

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Segregated Free Lists
A remaining problem with our free list
• Allocation is still linear in the number of free blocks

‒ Much better than linear in number of free or allocated blocks
‒ But the search for a suitable free block can still be expensive

A solution: segregated free lists, with multiple explicit free lists
• A different free list for each different free block size (or range of block sizes),

referred to as a size class (also called bins)
• Makes finding a suitable block much faster (or even constant time)

‒ First fit is now almost the same as best fit
• Small additional complexity (when splitting while allocating, or when

coalescing while freeing) to move to correct new free list

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Segregated Free Lists
Example: different size classes growing with powers of 2
• Size classes [1], [2], (2, 4], (4, 8], (8, 16], (16, 32], (32, 64], ..., (4096, ∞)
• All very large sizes are in the same (largest) size class

Example: different size classes for individual small sizes, then powers of 2
• Size classes [1], [2], [3], [4], [5], [6], ..., (1024, 2048], ..., (4096, ∞)
• All very large sizes are in the same (largest) size class

Some details
• What are the units here? Multiples of largest granularity or smallest block size
• What if the “correct” free list is empty? Can just look in the next larger class

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Other Possibilities are Almost Endless
Once you have an explicit list, you can do other interesting forms of it

Example: a balanced binary tree free list rather than just a plain list
• Could, e.g., store in the space inside each free block

struct free_info {
struct free_info *parent; // pointer to parent in the tree
struct free_info *left; // subtree for smaller free blocks
struct free_info *right; // subtree for larger free blocks
struct free_info *next; // next free block of the same size

};

• Makes the minimum block size requirement be a bit larger
• With a flexible way to find the segregated list of the right size free blocks

9

10

