
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Virtual Memory: Paging

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Problem: internal and external fragmentation again,
at a different level
• Each process’s address space should be contiguous
• Makes memory allocation difficult and expensive
• Growing a process’s address space is a mess

‒ Could allocate it larger than initially needed,
but that wastes memory

‒ And how do you plan for how much larger?
‒ Could move processes around in memory to

allow growing, but that’s expensive
‒ Example, move (copy) process 4’s memory up

to allow process 3 to grow

Kernel Memory Management and Allocation

Kernel

Process 4

Process 3

Process 1

Process 2

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

An addition to the hardware , managed by the OS kernel
• Conceptually divide memory into fixed-size (power of 2 in size) pages
• Each page is allocated and managed as an indivisible unit
• All pages here are the same size (common is 4096 = 0x1000)

Virtual Memory Using Paging

Byte offset within that page

Example: 4096 page size (0x1000)
• Offset is 0…4095 (12 bits for offset)

Page Number OffsetAn address

20 bits 12 bits

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Converting Virtual Address to Physical Address

VPN Offset PFN Offset

PFN

. . .
. . .

Page Table

Index

Virtual Page Number Page Frame Number
(Physical Page Number)

Array of page table entries
(array of PTEs)

All done automatically
by the hardware

Virtual Address Physical Address

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Paging Example

Process’s virtual address space size = 4 pages
Total hardware physical memory size = 8 pages

Process’s Page Table

A

D

C

B

A

B

C

D

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

Process’s
Virtual Memory

Hardware
Physical Memory

VPN PFNIndex

1

7

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Advantages
• Can map any physical page to appear anywhere in process’s address space
• Pages need not be contiguous in physical memory
• Can make any physical pages appear to be contiguous in virtual memory
• Thus, no external fragmentation
• Memory allocation is easy, just allocate any available physical page
• Can easily grow a process’s virtual address space
• Provides support for demand paging (later)

Disadvantages
• A small amount of internal fragmentation (up to size PAGESIZE – 1 bytes)

Advantages and Disadvantages of Paging

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Could be in an “array” of special hardware registers
• Can be very fast to translate virtual address to physical address
• But very limited; need a separate register for every virtual page of a process
• And what about the address space for other processes?

Instead, most CPUs define the page table to be stored in physical memory
• Can hold essentially arbitrarily large page tables for any number of processes
• Hardware just needs to know physical address and size of the page table
• Add two special CPU registers to the hardware

‒ Page Table Base Register (PTBR): physical address of the page table
‒ Page Table Limit Register (PTLR): the number of PTEs in the page table

(the array size)

Where is the Page Table?

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Any VPN ≥ PTLR is not accessible (that page effectively doesn’t exist)
• Any process’s address space can have any number of pages in it
• One process’s page table may have a different number of entries from

another process’s page table
• PTLR is thus required so that the hardware knows the size (# of entries)

‒ The hardware won’t access beyond the end of the PTE array
‒ Attempting to access any VPN ≥ PTLR causes an exception

And changing PTBR or PTLR requires a privileged instruction, so a process
can’t go beyond the pages defined in its own page table!

The Page Table Limit Register (PTLR)

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

The hardware finds the PTE in physical memory using PTBR and PTLR
• Add a “valid” bit to the format for each PTE (redefine 1 bit of the PTE)

• If PTE valid bit in needed PTE is 0, hardware causes exception on any access
• The kernel can set the valid bit to 0 in any PTE as needed or desired

‒ No physical page needs to be allocated if page’s PTE.valid == 0
‒ Basically, a virtual “hole” in the process’s address space that consumes

zero physical pages (the other PTE fields are ignored by the hardware)

Adding a PTE “Valid” Bit

Page Frame Number (PFN)V

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Separating the stack “far away” from the heap to allow room to grow
• The stack is up at high VPNs

(high virtual addresses)
• The text, data, bss, and heap

are down at low VPNs
(low virtual addresses)

• All PTEs in between are
set up with PTE.valid == 0

• This separation for space
between heap and stack
consumes zero physical pages!

• (other than the size of the page table)

Example Use of Setting PTE.valid == 0

71
151

1 61

21
501
111

291

. . .0

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Our current PTE definition, including the “valid” bit

Add hardware to treat part of each PTE as defining page protection

• Example: prot (e.g., a 3-bit field) define types of hardware-allowed accesses
• R (0x1 = 001): Reading the contents of the page (e.g., LOAD) is allowed
• W (0x2 = 010): Writing on the contents of the page (e.g., STORE) is allowed
• X (0x4 = 100): Executing the contents of the page (CPU instructions) is allowed

Controlling Protection on Individual Virtual Pages

Page Frame Number (PFN)V prot

Page Frame Number (PFN)V

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Kernel can set up protection to allow only necessary types of access
• The pages holding the text

of the program have prot
set to RX (0x5 = 101)

• The pages holding the data,
bss, and heap have prot set
to RW (0x3 = 011)

‒ The division between data,
bss, and heap need not be
on page boundaries

• The pages holding the stack
have prot set to RW (0x3 = 011)

Example Page Table for a Process

0

1
1

15
61

1
1
1

2
50
11

1
1

7
29

RW
RW

RW
RW
RW

RX
RX

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Our current PTE definition, including the “valid” and “prot” bits

Example: change hardware to define two separate protection fields

• Hardware automatically uses kprot or uprot, depending on current mode
‒ kprot if CPU is currently in kernel mode, uprot if CPU is in user mode

• The kernel can make some pages kernel accessible but not user accessible

Separate Protection for User vs. Kernel Mode

Page Frame Number (PFN)V prot

Page Frame Number (PFN)V kprot uprot

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

Every memory access requires two memory accesses
• The relevant PTE is required by the hardware in order to translate the

original memory address from a virtual address to a physical address
• With the page table stored in physical memory, accessing that PTE requires

a physical memory read to get the PTE
• Thus, two physical memory accesses for each original one access

‒ One access to get the relevant PTE, and then
‒ One access to do the original program memory access

• Thus, the memory accesses run at basically half-speed (two memory
accesses for each one memory access)

A Problem with Our Current Paging Support

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

A hardware cache of recently used PTEs
• Typically maintained automatically entirely by the hardware

‒ Hardware extracts the VPN from address being accessed
‒ If the PTE for this VPN is not in the TLB, hardware goes to physical

memory to get it (using PTBR and PTLR) and adds PTE to the TLB
‒ In either case, hardware uses TLB copy of PTE to translate the address

• Basically as fast as a complete set of special hardware registers to hold the
whole page table, but really just a cache of recently used PTEs

‒ Even with a moderately small TLB size, hardware gets a high hit rate

Solution: The “Translation Lookaside Buffer” (TLB)

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

A fixed number of entries, built into the hardware

• If the “V” (Valid) bit is set, that TLB entry is “valid” (i.e., it’s not “empty”)
• Hardware searches all entries for a valid entry with the needed VPN
• If not found, hardware loads the needed PTE from physical memory into

the TLB, caching it, replacing some other TLB entry if needed

A TLB Implementation

Cached PTE for That VPNVPNV
Cached PTE for That VPNVPNV

Cached PTE for That VPNVPNV
Cached PTE for That VPNVPNV

.

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

The kernel has a very “narrow window” to interface with the TLB hardware
• The kernel cannot look into the TLB to see what’s in it
• The kernel cannot explicitly modify any entries in the TLB
• The kernel can only “flush” the TLB

‒ Can flush all entries (set V = 0 for all TLB entries)
‒ Or flush the entry for a specific virtual address (if it’s in the TLB)
‒ Either one forces PTE to be reloaded from physical memory on next use

• Two reasons the kernel must flush one or all TLB entries
‒ If the kernel modifies a PTE in memory, to enable the TLB see it
‒ Or if the kernel context switches to a new process, since the two

process’ VPNs otherwise get confused in TLB entries (the same numbers)

Flushing the TLB

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

Another small addition to the hardware
• A new special register ASID to hold a unique id for the current address space

‒ Kernel changes this register value on a context switch
‒ Sometimes called PID (even though different than software pid)

• Add an ASID field to each TLB entry
‒ Hardware records current ASID register value in TLB entry when loading
‒ Hardware compares VPN and ASID fields (and TLB valid bit) on searching

for a matching entry

• Makes the incoming
process after a context
switch run much faster

Adding Hardware Address Space ID in the TLB

Cached PTE
Cached PTE
Cached PTE
Cached PTE

VPNV
VPNV
VPNV
VPNV

ASID
ASID
ASID
ASID

17

18

