
1

Copyright © 2025  David B. JohnsonCOMP 321 Page 1
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Problem: internal and external fragmentation again,
at a different level
• Each process’s address space should be contiguous
• Makes memory allocation difficult and expensive
• Growing a process’s address space is a mess

‒ Could allocate it larger than initially needed,
but that wastes memory

‒ And how do you plan for how much larger?
‒ Could move processes around in memory to

allow growing, but that’s expensive
‒ Example, move (copy) process 4’s memory up

to allow process 3 to grow

Kernel Memory Management and Allocation

Kernel

Process 4

Process 3

Process 1

Process 2
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An addition to the hardware , managed by the OS kernel
• Conceptually divide memory into fixed-size (power of 2 in size) pages
• Each page is allocated and managed as an indivisible unit
• All pages here are the same size (common is 4096 = 0x1000)

Virtual Memory Using Paging

Byte offset within that page

Example: 4096 page size (0x1000)
• Offset is 0…4095 (12 bits for offset)

Page Number OffsetAn address

20 bits 12 bits
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Converting Virtual Address to Physical Address

VPN Offset PFN Offset

PFN

. . .
. . .

Page Table

Index

Virtual Page Number Page Frame Number
(Physical Page Number)

Array of page table entries
(array of PTEs)

All done automatically
by the hardware

Virtual Address Physical Address
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Paging Example

Process’s virtual address space size = 4 pages
Total hardware physical memory size = 8 pages

Process’s Page Table
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Advantages
• Can map any physical page to appear anywhere in process’s address space
• Pages need not be contiguous in physical memory
• Can make any physical pages appear to be contiguous in virtual memory
• Thus, no external fragmentation
• Memory allocation is easy, just allocate any available physical page
• Can easily grow a process’s virtual address space
• Provides support for demand paging (later)

Disadvantages
• A small amount of internal fragmentation (up to size PAGESIZE – 1 bytes)

Advantages and Disadvantages of Paging
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Could be in an “array” of special hardware registers
• Can be very fast to translate virtual address to physical address
• But very limited; need a separate register for every virtual page of a process
• And what about the address space for other processes?

Instead, most CPUs define the page table to be stored in physical memory
• Can hold essentially arbitrarily large page tables for any number of processes
• Hardware just needs to know physical address and size of the page table
• Add two special CPU registers to the hardware

‒ Page Table Base Register (PTBR): physical address of the page table
‒ Page Table Limit Register (PTLR): the number of PTEs in the page table 

(the array size)

Where is the Page Table?
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Any VPN ≥ PTLR is not accessible (that page effectively doesn’t exist)
• Any process’s address space can have any number of pages in it
• One process’s page table may have a different number of entries from 

another process’s page table
• PTLR is thus required so that the hardware knows the size (# of entries)

‒ The hardware won’t access beyond the end of the PTE array
‒ Attempting to access any VPN ≥ PTLR causes an exception

And changing PTBR or PTLR requires a privileged instruction, so a process 
can’t go beyond the pages defined in its own page table!

The Page Table Limit Register (PTLR)
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The hardware finds the PTE in physical memory using PTBR and PTLR
• Add a “valid” bit to the format for each PTE (redefine 1 bit of the PTE)

• If PTE valid bit in needed PTE is 0, hardware causes exception on any access
• The kernel can set the valid bit to 0 in any PTE as needed or desired

‒ No physical page needs to be allocated if page’s PTE.valid == 0
‒ Basically, a virtual “hole” in the process’s address space that consumes 

zero physical pages (the other PTE fields are ignored by the hardware)

Adding a PTE “Valid” Bit

Page Frame Number (PFN)V

Copyright © 2025  David B. JohnsonCOMP 321 Page 10

Separating the stack “far away” from the heap to allow room to grow
• The stack is up at high VPNs

(high virtual addresses)
• The text, data, bss, and heap

are down at low VPNs
(low virtual addresses)

• All PTEs in between are
set up with PTE.valid == 0

• This separation for space
between heap and stack
consumes zero physical pages!

• (other than the size of the page table)

Example Use of Setting PTE.valid == 0
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Our current PTE definition, including the “valid” bit

Add hardware to treat part of each PTE as defining page protection

• Example: prot (e.g., a 3-bit field) define types of hardware-allowed accesses
• R (0x1 = 001): Reading the contents of the page (e.g., LOAD) is allowed
• W (0x2 = 010): Writing on the contents of the page (e.g., STORE) is allowed
• X (0x4 = 100): Executing the contents of the page (CPU instructions) is allowed

Controlling Protection on Individual Virtual Pages

Page Frame Number (PFN)V prot

Page Frame Number (PFN)V

Copyright © 2025  David B. JohnsonCOMP 321 Page 12

Kernel can set up protection to allow only necessary types of access
• The pages holding the text

of the program have prot
set to RX (0x5 = 101)

• The pages holding the data,
bss, and heap have prot set
to RW (0x3 = 011)

‒ The division between data,
bss, and heap need not be
on page boundaries

• The pages holding the stack
have prot set to RW (0x3 = 011)

Example Page Table for a Process
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Our current PTE definition, including the “valid” and “prot” bits

Example: change hardware to define two separate protection fields

• Hardware automatically uses kprot or uprot, depending on current mode
‒ kprot if CPU is currently in kernel mode, uprot if CPU is in user mode

• The kernel can make some pages kernel accessible but not user accessible

Separate Protection for User vs. Kernel Mode

Page Frame Number (PFN)V prot

Page Frame Number (PFN)V kprot uprot
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Every memory access requires two memory accesses
• The relevant PTE is required by the hardware in order to translate the 

original memory address from a virtual address to a physical address
• With the page table stored in physical memory, accessing that PTE requires 

a physical memory read to get the PTE
• Thus, two physical memory accesses for each original one access

‒ One access to get the relevant PTE, and then
‒ One access to do the original program memory access

• Thus, the memory accesses run at basically half-speed (two memory 
accesses for each one memory access)

A Problem with Our Current Paging Support
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A hardware cache of recently used PTEs
• Typically maintained automatically entirely by the hardware

‒ Hardware extracts the VPN from address being accessed
‒ If the PTE for this VPN is not in the TLB, hardware goes to physical 

memory to get it (using PTBR and PTLR) and adds PTE to the TLB
‒ In either case, hardware uses TLB copy of PTE to translate the address

• Basically as fast as a complete set of special hardware registers to hold the 
whole page table, but really just a cache of recently used PTEs

‒ Even with a moderately small TLB size, hardware gets a high hit rate

Solution: The “Translation Lookaside Buffer” (TLB)
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A fixed number of entries, built into the hardware

• If the “V” (Valid) bit is set, that TLB entry is “valid” (i.e., it’s not “empty”)
• Hardware searches all entries for a valid entry with the needed VPN
• If not found, hardware loads the needed PTE from physical memory into 

the TLB, caching it, replacing some other TLB entry if needed

A TLB Implementation

Cached PTE for That VPNVPNV
Cached PTE for That VPNVPNV

Cached PTE for That VPNVPNV
Cached PTE for That VPNVPNV

. . .. . .
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The kernel has a very “narrow window” to interface with the TLB hardware
• The kernel cannot look into the TLB to see what’s in it
• The kernel cannot explicitly modify any entries in the TLB
• The kernel can only “flush” the TLB

‒ Can flush all entries (set V = 0 for all TLB entries)
‒ Or flush the entry for a specific virtual address (if it’s in the TLB)
‒ Either one forces PTE to be reloaded from physical memory on next use

• Two reasons the kernel must flush one or all TLB entries
‒ If the kernel modifies a PTE in memory, to enable the TLB see it
‒ Or if the kernel context switches to a new process, since the two 

process’ VPNs otherwise get confused in TLB entries (the same numbers)

Flushing the TLB
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Another small addition to the hardware
• A new special register ASID to hold a unique id for the current address space

‒ Kernel changes this register value on a context switch
‒ Sometimes called PID (even though different than software pid)

• Add an ASID field to each TLB entry
‒ Hardware records current ASID register value in TLB entry when loading
‒ Hardware compares VPN and ASID fields (and TLB valid bit) on searching 

for a matching entry

• Makes the incoming
process after a context
switch run much faster

Adding Hardware Address Space ID in the TLB

Cached PTE
Cached PTE
Cached PTE
Cached PTE

VPNV
VPNV
VPNV
VPNV

ASID
ASID
ASID
ASID
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