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Virtual Memory: The Page Table
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An addition to the hardware , managed by the OS kernel
• Conceptually divide memory into fixed-size (power of 2 in size) pages
• Each page is allocated and managed as an indivisible unit
• All pages here are the same size (common is 4096 = 0x1000)

Review: Virtual Memory Using Paging

Byte offset within that page

Example: 4096 page size (0x1000)
• Offset is 0…4095 (12 bits for offset)

Page Number OffsetAn address

20 bits 12 bits
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Converting Virtual Address to Physical Address

VPN Offset PFN Offset

PFN
. . .

. . .

Page Table

Index

Virtual Page Number Page Frame Number
(Physical Page Number)

Array of page table entries
(array of PTEs)

All done automatically
by the hardware

Virtual Address Physical Address
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Each PTE contains a number of separate fields

• Valid (V): If 0, no access to page is allowed (page “doesn’t exist”)
‒ Hardware causes an exception on attempt to access that virtual page

• Protection (prot): Usually separate bits for user vs. kernel mode – example:
‒ R (0x1 = 001): Reading the contents of the page is allowed
‒ W (0x2 = 010): Writing on the contents of the page is allowed
‒ X (0x4 = 100): Executing the contents of the page is allowed

• Page Frame Number (PFN): The physical page this virtual page is mapped to

Page Table Entry Format

Page Frame Number (PFN)V prot
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A fixed number of entries, built into the hardware

• If the “V” (Valid) bit is set, that TLB entry is “valid” (not “empty”)
• The hardware searches all TLB entries for a valid entry (V = 1) with the 

needed VPN and ASID
• If not found, the hardware loads the needed PTE from physical memory 

into the TLB, caching it and replacing some other TLB entry if needed

The TLB: A Cache of Page Table Entries

PTE
PTE
PTE
PTE

VPNV
VPNV
VPNV
VPNV

ASID
ASID
ASID
ASID
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Both must know the meaning of the bits in an individual PTE (PTE format)
• The hardware uses the PTE, and the kernel builds (and may modify) any

Both must know the location and layout of the page table itself
• The hardware uses the PTEs, and the kernel builds (and may modify) them
• Both must know how to find the PTE for any given virtual page
• With basic paging, each address space’s page table is a single array of PTEs

‒ PTBR: The physical memory address of the beginning of that array
‒ PTLR: The size of that array (number of entries in that array)

The “Contract” between Hardware and Software
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Need room for them to grow without overlapping
• The heap grows up, and the stack grows down
• Thus, we want to place the heap at low VPNs and

the stack at high VPNs
‒ Thus, heap PTEs at low index in the page table

and the stack PTEs at high index in the page table
‒ Room for many pages of growth in between
‒ That requires leaving many invalid PTEs

in between
• But that means the entire page table must be very

large (e.g., 4 bytes per PTE, whether valid or not)

Placing the Stack “Far Away” from the Heap

data/bss/heap PTEs
text PTEs

stack PTEs

many invalid PTEs
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Need room for them to grow without overlapping
• Each thread stack independently grows down
• We need to place all of those stacks far from

each other and far from the heap
‒ That requires leaving many invalid PTEs

in between, in many places
• But that means the entire page table must be

very, very large

• Same problem for other large data structures
that you may want to be able to grow and
remain contiguous

And Each Thread Needs Its Own Stack

data/bss/heap PTEs
text PTEs

thread 1 stack PTEs

many invalid PTEs

thread 2 stack PTEs

many invalid PTEs
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The kernel is somewhere in each process’s virtual address space
• On interrupt/exception/trap, hardware does not change PTBR or PTLR

‒ Hardware only goes into kernel mode and starts executing instructions 
where that interrupt vector table entry points to

‒ So the correct instructions must be there, and the correct data too
• Consider pointer-based data structures in the kernel (e.g., a linked list)

‒ You enter the kernel while running as one process
‒ While in the kernel, the kernel context switches to another process
‒ All those pointers in all those kernel data structures must still work

• Conclusion: The kernel needs to be at the same virtual address in every 
process’s address space

Where Is the Kernel in the Virtual Address Space?
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Pick a starting address for the kernel
• Build the PTEs for the kernel at that VPN in the

page table for every process
• Build the text/data/bss/heap PTEs at the beginning

of the page table, as needed for each process
‒ Depending on the size of that program

• Build stack PTEs immediately below kernel PTEs
‒ No reason to put them at lower VPNs

• Now all page tables are the same (very large) size,
regardless of the size of the user program

Building the Page Table for All That

data/bss/heap PTEs
text PTEs

stack PTEs

kernel PTEs

many invalid PTEs
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A common layout for 32-bit computers
• Addresses 0 < x ≤ 0x7fffffff for the user program,

addresses 0x80000000 < x ≤ 0xffffffff for the kernel
‒ Thus, 2 GB of address space available for each

• Suppose the page size is 4096
• And suppose the kernel is only 16 kB = 4 pages
• User: 2 GB / 4 kB
• Kernel: 4 pages = 4 PTEs = 16 bytes
• Total = (2 M + 16) bytes for the page table, 

regardless of the size of the user program
• (Only worse on a 64-bit computer)

Example on a 32-Bit Computer

data/bss/heap PTEs
text PTEs

stack PTEs

kernel PTEs

many invalid PTEs

= 1/2 M pages = 1/2 M PTEs = 2 MB
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A copy of the kernel’s PTEs must appear in every
process’s page table
• Each process has its own page table
• The kernel appears at the same virtual address in

every process’s address space
• So the kernel’s PTEs must appear at the same

VPNs in every process’s page table
‒ Wastes memory having so many PTE copies
‒ Difficult to keep the copies consistent between

all page tables

The Kernel’s PTEs Are Duplicated

data/bss/heap PTEs
text PTEs

stack PTEs

kernel PTEs

many invalid PTEs
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Change hardware to understand the page table as a hierarchy of sub-tables
• Each sub-table is indexed by different bits of the virtual address
• Example: 32-bit Intel x86 paging hardware – a two-level tree

‒ Top 10 bits of virtual address is the index into the level-1 (top level) table
‒ Next 10 bits of virtual address is the index into the level-2 table

• One special register has physical address of top-level table (example Intel CR3)
• This treatment of virtual addresses is built into the hardware

Common Solution: Tree-Structured Page Table

Level-1 Index Offset
virtual

address Level-2 Index

12 bits10 bits10 bits

Copyright © 2025  David B. JohnsonCOMP 321 Page 14

0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . . 0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . .

. . .
Level-2

Page Tables

physical
addresses of
sub-tables

beginning physical
address of table Level-1

Page Table

0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . .

0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . .

Page Table Structure
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Seems more complex and slower
• More tables for the kernel to build, and more levels of indirection
• 3 physical memory accesses for the hardware for each LOAD/STORE

‒ 2 just for the levels of the page table, plus the actual LOAD/STORE
• But the TLB avoids almost all of those extra physical memory accesses

And the (small) complexity has given us many advantages, including
• Page table allocation and management is much easier

‒ Only each smaller table must be physically contiguous, not the whole
‒ Intel: Each table is 210 entries = 1024 × 4 bytes = 4 kB = PAGESIZE
‒ No more fragmentation in allocating or growing a page table

• And unused level-2 tables don’t even need to physically exist!

So What Have We Accomplished?
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A very common layout for 32-bits

• Divide the address space in half
‒ The bottom half for the user

(addresses beginning with 0 bit)
‒ The top half for the kernel

(addresses beginning with 1 bit)
‒ (kernel stack is omitted in this

example for simplicity)

• 4 GB total, with 2 GB for each half

• PAGESIZE = 4 kB = 4096

Example Address Space Layout

user heap
user data/bss

user text

user stack

kernel heap
kernel data/bss

kernel text
0111…

0000…

1111…

1000…0x80000000

0x00000000

0xffffffff

0x7fffffff
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Example Page Table Page Table

0

700

800 RW PTEs

1500

523988 300 RW PTEs
524288

525088
524788

500 RX PTEs

700 RX PTEs

300 RW PTEs

231 / 4096

0

522489 
invalid PTEs

Consider this using a simple (“basic”) page table
• 700 user text pages
• 800 data/bss/heap pages
• 300 user stack pages
• 500 kernel text pages
• 300 kernel data/bss/heap pages

Page table limit register = 525,088

Page table size = 525,088 × 4 = 2,100,352 bytes
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0

Example Page Table

Level-1 Page Table

0

1023

511
512

Level-2 Page Tables

0

1023
700 324 RW PTEs

700 RX PTEs

0

1023

476 RW PTEs

476

1023
724 300 RW PTEs

0

1023

500
500 RX PTEs

1

300 RW PTEs

700 user text pages

800 user data/bss/heap pages

300 user stack pages

500 kernel text pages

300 kernel data/bss/heap pages

Total page table size =
4096 + 4 × 4096 =

20,480 bytes

Simple page table size =
2,100,352 bytes !

800

548 invalid

724 invalid

224 invalid

Other level-2 tables
do not physically exist
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Example: the first byte of the user text
• The first byte in the entire virtual address space
• Means the first PTE in the first level-2 table pointed to by first level-1 entry
• First address 0x00000000: level-1 index = 0, level-2 index = 0

Example: the last byte of the user stack
• The last byte immediately below the halfway point in the virtual address space
• Last PTE in last level-2 table pointed to by the level-1 entry just below middle
• Last address 0x7fffffff: level-1 index = 0x1ff = 511, level-2 index = 0x3ff = 1023

Example: the first byte of the kernel text
• The first byte immediately above the halfway point in the virtual address space
• First PTE in first level-2 table pointed to by the level-1 entry just above middle
• First address 0x80000000: level-1 index = 0x200 = 512, level-2 index = 0

Logical/Geometric vs. Mathematical Layout
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Easy to have shared “sub-trees” if you want to
• Example: can put the kernel in every process’s address space without 

duplicating PTEs
‒ Just duplicate the level-1 pointer(s) to the shared level-2 subtree(s)

• Can also be used, for example, for shared libraries, or for a block of shared 
memory between different address spaces, etc.

Can efficiently have almost arbitrary “sparse” address spaces
• Putting the stack far away from the heap, putting the stacks for different 

threads far away from each other, etc.
‒ Any level-1 pointer that is NULL (or valid == 0) means the corresponding 

level-2 table doesn’t exist, as if all those PTEs had valid == 0

Other Big Advantages
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Example: 32-bit SPARC 3-level tree hierarchy

• Each level-1 table holds 28 = 256 entries = 1024 bytes
‒ Thus can fit 4 level-1 tables in each 4096-byte physical page

• Each level-2 or level-3 table holds 26 = 64 entries = 256 bytes
‒ Thus can fit 16 level-2 or level-3 tables in each 4096-byte physical page

Different Designs for the Tree Hierarchy

Level-1
Index

Level-2
Index

Level-3
Index Offset

12 bits6 bits8 bits 6 bits
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Example: 64-bit Intel x86 4-level tree hierarchy (called “IA-32e paging”)

• Really only a 48-bit virtual address
• Reserved bits must match the high-order bit of the level-1 index

Example: 64-bit Intel x86 “5-level paging” (vs. new name “4-level paging”)

• Extended by another 9-bit index, to now be a 57-bit virtual address
• Newer CPUs default to 4-level paging, but kernel can enable 5-level paging

Different Designs for the Tree Hierarchy

Level-1
Index

Level-2
Index

Level-3
Index

Level-4
Index OffsetReserved

12 bits9 bits9 bits 9 bits9 bits16 bits

Level-2
Index

Level-3
Index

Level-4
Index

Level-5
Index OffsetReserved

12 bits9 bits9 bits 9 bits9 bits7 bits

Level-1
Index

9 bits
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