
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Virtual Memory: The Page Table

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

An addition to the hardware , managed by the OS kernel
• Conceptually divide memory into fixed-size (power of 2 in size) pages
• Each page is allocated and managed as an indivisible unit
• All pages here are the same size (common is 4096 = 0x1000)

Review: Virtual Memory Using Paging

Byte offset within that page

Example: 4096 page size (0x1000)
• Offset is 0…4095 (12 bits for offset)

Page Number OffsetAn address

20 bits 12 bits

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Converting Virtual Address to Physical Address

VPN Offset PFN Offset

PFN
. . .

. . .

Page Table

Index

Virtual Page Number Page Frame Number
(Physical Page Number)

Array of page table entries
(array of PTEs)

All done automatically
by the hardware

Virtual Address Physical Address

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Each PTE contains a number of separate fields

• Valid (V): If 0, no access to page is allowed (page “doesn’t exist”)
‒ Hardware causes an exception on attempt to access that virtual page

• Protection (prot): Usually separate bits for user vs. kernel mode – example:
‒ R (0x1 = 001): Reading the contents of the page is allowed
‒ W (0x2 = 010): Writing on the contents of the page is allowed
‒ X (0x4 = 100): Executing the contents of the page is allowed

• Page Frame Number (PFN): The physical page this virtual page is mapped to

Page Table Entry Format

Page Frame Number (PFN)V prot

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

A fixed number of entries, built into the hardware

• If the “V” (Valid) bit is set, that TLB entry is “valid” (not “empty”)
• The hardware searches all TLB entries for a valid entry (V = 1) with the

needed VPN and ASID
• If not found, the hardware loads the needed PTE from physical memory

into the TLB, caching it and replacing some other TLB entry if needed

The TLB: A Cache of Page Table Entries

PTE
PTE
PTE
PTE

VPNV
VPNV
VPNV
VPNV

ASID
ASID
ASID
ASID

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Both must know the meaning of the bits in an individual PTE (PTE format)
• The hardware uses the PTE, and the kernel builds (and may modify) any

Both must know the location and layout of the page table itself
• The hardware uses the PTEs, and the kernel builds (and may modify) them
• Both must know how to find the PTE for any given virtual page
• With basic paging, each address space’s page table is a single array of PTEs

‒ PTBR: The physical memory address of the beginning of that array
‒ PTLR: The size of that array (number of entries in that array)

The “Contract” between Hardware and Software

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Need room for them to grow without overlapping
• The heap grows up, and the stack grows down
• Thus, we want to place the heap at low VPNs and

the stack at high VPNs
‒ Thus, heap PTEs at low index in the page table

and the stack PTEs at high index in the page table
‒ Room for many pages of growth in between
‒ That requires leaving many invalid PTEs

in between
• But that means the entire page table must be very

large (e.g., 4 bytes per PTE, whether valid or not)

Placing the Stack “Far Away” from the Heap

data/bss/heap PTEs
text PTEs

stack PTEs

many invalid PTEs

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Need room for them to grow without overlapping
• Each thread stack independently grows down
• We need to place all of those stacks far from

each other and far from the heap
‒ That requires leaving many invalid PTEs

in between, in many places
• But that means the entire page table must be

very, very large

• Same problem for other large data structures
that you may want to be able to grow and
remain contiguous

And Each Thread Needs Its Own Stack

data/bss/heap PTEs
text PTEs

thread 1 stack PTEs

many invalid PTEs

thread 2 stack PTEs

many invalid PTEs

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

The kernel is somewhere in each process’s virtual address space
• On interrupt/exception/trap, hardware does not change PTBR or PTLR

‒ Hardware only goes into kernel mode and starts executing instructions
where that interrupt vector table entry points to

‒ So the correct instructions must be there, and the correct data too
• Consider pointer-based data structures in the kernel (e.g., a linked list)

‒ You enter the kernel while running as one process
‒ While in the kernel, the kernel context switches to another process
‒ All those pointers in all those kernel data structures must still work

• Conclusion: The kernel needs to be at the same virtual address in every
process’s address space

Where Is the Kernel in the Virtual Address Space?

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Pick a starting address for the kernel
• Build the PTEs for the kernel at that VPN in the

page table for every process
• Build the text/data/bss/heap PTEs at the beginning

of the page table, as needed for each process
‒ Depending on the size of that program

• Build stack PTEs immediately below kernel PTEs
‒ No reason to put them at lower VPNs

• Now all page tables are the same (very large) size,
regardless of the size of the user program

Building the Page Table for All That

data/bss/heap PTEs
text PTEs

stack PTEs

kernel PTEs

many invalid PTEs

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

A common layout for 32-bit computers
• Addresses 0 < x ≤ 0x7fffffff for the user program,

addresses 0x80000000 < x ≤ 0xffffffff for the kernel
‒ Thus, 2 GB of address space available for each

• Suppose the page size is 4096
• And suppose the kernel is only 16 kB = 4 pages
• User: 2 GB / 4 kB
• Kernel: 4 pages = 4 PTEs = 16 bytes
• Total = (2 M + 16) bytes for the page table,

regardless of the size of the user program
• (Only worse on a 64-bit computer)

Example on a 32-Bit Computer

data/bss/heap PTEs
text PTEs

stack PTEs

kernel PTEs

many invalid PTEs

= 1/2 M pages = 1/2 M PTEs = 2 MB

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

A copy of the kernel’s PTEs must appear in every
process’s page table
• Each process has its own page table
• The kernel appears at the same virtual address in

every process’s address space
• So the kernel’s PTEs must appear at the same

VPNs in every process’s page table
‒ Wastes memory having so many PTE copies
‒ Difficult to keep the copies consistent between

all page tables

The Kernel’s PTEs Are Duplicated

data/bss/heap PTEs
text PTEs

stack PTEs

kernel PTEs

many invalid PTEs

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Change hardware to understand the page table as a hierarchy of sub-tables
• Each sub-table is indexed by different bits of the virtual address
• Example: 32-bit Intel x86 paging hardware – a two-level tree

‒ Top 10 bits of virtual address is the index into the level-1 (top level) table
‒ Next 10 bits of virtual address is the index into the level-2 table

• One special register has physical address of top-level table (example Intel CR3)
• This treatment of virtual addresses is built into the hardware

Common Solution: Tree-Structured Page Table

Level-1 Index Offset
virtual

address Level-2 Index

12 bits10 bits10 bits

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . . 0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . .

. . .
Level-2

Page Tables

physical
addresses of
sub-tables

beginning physical
address of table Level-1

Page Table

0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . .

0

1021
1022
10231 2 3

PTE
PTE. . .

PTE

PTE

PTE
PTE
PTE

. . .

Page Table Structure

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

Seems more complex and slower
• More tables for the kernel to build, and more levels of indirection
• 3 physical memory accesses for the hardware for each LOAD/STORE

‒ 2 just for the levels of the page table, plus the actual LOAD/STORE
• But the TLB avoids almost all of those extra physical memory accesses

And the (small) complexity has given us many advantages, including
• Page table allocation and management is much easier

‒ Only each smaller table must be physically contiguous, not the whole
‒ Intel: Each table is 210 entries = 1024 × 4 bytes = 4 kB = PAGESIZE
‒ No more fragmentation in allocating or growing a page table

• And unused level-2 tables don’t even need to physically exist!

So What Have We Accomplished?

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

A very common layout for 32-bits

• Divide the address space in half
‒ The bottom half for the user

(addresses beginning with 0 bit)
‒ The top half for the kernel

(addresses beginning with 1 bit)
‒ (kernel stack is omitted in this

example for simplicity)

• 4 GB total, with 2 GB for each half

• PAGESIZE = 4 kB = 4096

Example Address Space Layout

user heap
user data/bss

user text

user stack

kernel heap
kernel data/bss

kernel text
0111…

0000…

1111…

1000…0x80000000

0x00000000

0xffffffff

0x7fffffff

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

Example Page Table Page Table

0

700

800 RW PTEs

1500

523988 300 RW PTEs
524288

525088
524788

500 RX PTEs

700 RX PTEs

300 RW PTEs

231 / 4096

0

522489
invalid PTEs

Consider this using a simple (“basic”) page table
• 700 user text pages
• 800 data/bss/heap pages
• 300 user stack pages
• 500 kernel text pages
• 300 kernel data/bss/heap pages

Page table limit register = 525,088

Page table size = 525,088 × 4 = 2,100,352 bytes

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

0

Example Page Table

Level-1 Page Table

0

1023

511
512

Level-2 Page Tables

0

1023
700 324 RW PTEs

700 RX PTEs

0

1023

476 RW PTEs

476

1023
724 300 RW PTEs

0

1023

500
500 RX PTEs

1

300 RW PTEs

700 user text pages

800 user data/bss/heap pages

300 user stack pages

500 kernel text pages

300 kernel data/bss/heap pages

Total page table size =
4096 + 4 × 4096 =

20,480 bytes

Simple page table size =
2,100,352 bytes !

800

548 invalid

724 invalid

224 invalid

Other level-2 tables
do not physically exist

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

Example: the first byte of the user text
• The first byte in the entire virtual address space
• Means the first PTE in the first level-2 table pointed to by first level-1 entry
• First address 0x00000000: level-1 index = 0, level-2 index = 0

Example: the last byte of the user stack
• The last byte immediately below the halfway point in the virtual address space
• Last PTE in last level-2 table pointed to by the level-1 entry just below middle
• Last address 0x7fffffff: level-1 index = 0x1ff = 511, level-2 index = 0x3ff = 1023

Example: the first byte of the kernel text
• The first byte immediately above the halfway point in the virtual address space
• First PTE in first level-2 table pointed to by the level-1 entry just above middle
• First address 0x80000000: level-1 index = 0x200 = 512, level-2 index = 0

Logical/Geometric vs. Mathematical Layout

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

Easy to have shared “sub-trees” if you want to
• Example: can put the kernel in every process’s address space without

duplicating PTEs
‒ Just duplicate the level-1 pointer(s) to the shared level-2 subtree(s)

• Can also be used, for example, for shared libraries, or for a block of shared
memory between different address spaces, etc.

Can efficiently have almost arbitrary “sparse” address spaces
• Putting the stack far away from the heap, putting the stacks for different

threads far away from each other, etc.
‒ Any level-1 pointer that is NULL (or valid == 0) means the corresponding

level-2 table doesn’t exist, as if all those PTEs had valid == 0

Other Big Advantages

19

20

11

Copyright © 2025 David B. JohnsonCOMP 321 Page 21

Example: 32-bit SPARC 3-level tree hierarchy

• Each level-1 table holds 28 = 256 entries = 1024 bytes
‒ Thus can fit 4 level-1 tables in each 4096-byte physical page

• Each level-2 or level-3 table holds 26 = 64 entries = 256 bytes
‒ Thus can fit 16 level-2 or level-3 tables in each 4096-byte physical page

Different Designs for the Tree Hierarchy

Level-1
Index

Level-2
Index

Level-3
Index Offset

12 bits6 bits8 bits 6 bits

Copyright © 2025 David B. JohnsonCOMP 321 Page 22

Example: 64-bit Intel x86 4-level tree hierarchy (called “IA-32e paging”)

• Really only a 48-bit virtual address
• Reserved bits must match the high-order bit of the level-1 index

Example: 64-bit Intel x86 “5-level paging” (vs. new name “4-level paging”)

• Extended by another 9-bit index, to now be a 57-bit virtual address
• Newer CPUs default to 4-level paging, but kernel can enable 5-level paging

Different Designs for the Tree Hierarchy

Level-1
Index

Level-2
Index

Level-3
Index

Level-4
Index OffsetReserved

12 bits9 bits9 bits 9 bits9 bits16 bits

Level-2
Index

Level-3
Index

Level-4
Index

Level-5
Index OffsetReserved

12 bits9 bits9 bits 9 bits9 bits7 bits

Level-1
Index

9 bits

21

22

