
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Virtual Memory: Demand Paging

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

What We Have Done So Far with Paging
• An operating system creates abstractions

• Use hardware support for paging in order to make physical pages appear to
be where we want them to appear in the virtual address space

• The operating system kernel creates page tables, and the hardware uses them

• You can use any available physical page for any need

• Eliminates external fragmentation

• Internal fragmentation generally limited to less than page size

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

What is New with Demand Paging?
• Extend this abstraction to make it appear that we have more total memory

than we really have

• Uses essentially the same paging hardware we’ve been using

• The “trick” is that not all pages of “memory” need to be in physical
memory at once

• The rest of the “memory” is actually stored on disk (called “backing store”)

• Pages are moved from disk into physical memory as needed (on demand)

• Physical memory is effectively now just a cache containing a subset of all
virtual pages

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Assumption: The Principle of Locality
Temporal locality
• An executing program is likely to reference the same memory location

again in the near future
• Examples: a variable used in a loop, the instructions within the loop,

or a frequently used function

Spatial locality
• An executing program is likely to reference nearby memory locations in

the near future
• Examples: Nearby entries in same array or struct, nearby instructions,

other parts of the same page

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Hardware Requirements: Support in PTE Format
The “valid” bit in each PTE:

• The kernel sets valid = 0 in the PTE if that page is not in physical memory
• Any use of a virtual address within this page by software thus causes an

exception
‒ The kernel can then read the page from disk into physical memory
‒ This type of exception is referred to as a “page fault” – but the

hardware does not know what a “page fault” or demand paging is!
• The kernel must also somehow keep track of why the valid bit was set to 0

Page Frame Number (PFN)V prot

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Basic Handling for a Page Fault
• The hardware checks PTE valid bit when translating virtual to physical address
• If valid == 0, then the hardware generates an exception

‒ The hardware doesn’t know what a “page fault” is!
‒ The kernel figures out that this is a page fault and blocks the process
‒ If no free physical page is available, the kernel selects some virtual page to

evict from physical memory to make room (called the “victim” page)
o The kernel writes the victim virtual page contents to disk
o The kernel clears the valid bit in victim page’s PTE

‒ The kernel sets the valid bit and updates pfn in needed virtual page’s PTE
‒ The kernel reads the needed virtual page from disk into that physical page
‒ The kernel unblocks the process

• Upon return, hardware re-executes the instruction that caused the page fault

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Hardware Requirements: Restartable Instructions
The CPU must have “restartable instructions” (for all instructions):
• VAX example: MOVL (R1)+, -(R2)

‒ Moves “longword” (32 bits) from memory pointed to by register R1
(post-increment) to (pre-decrement) memory now pointed to by register R2

‒ Equivalent in C to: *--R2 = *R1++

X
Y
Z

A
B
C
D

0x421C

0x4218

0x4214

0x4210

0x123C

0x1238

0x1234

R1 →

R2 →

. . . Moves C to Y

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Hardware Requirements: Restartable Instructions
• What if a page fault occurs when writing to memory where R2 now points?
• The PC register still points to this same MOVL instruction
• Hardware must not increment R1 again/decrement R2 again after page fault

‒ Hardware either first undoes side-effects, or remembers which have
been done so it does not redo them

X
Y
Z

A
B
C
D

0x421C

0x4218

0x4214

0x4210

0x123C

0x1238

0x1234

R1 →

R2 →

. . .

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Other Examples for Restartable Instructions
VAX:
• MOVC3 len, src, dst (similar to memcpy)
• MOVC5 srclen, src, fill, dstlen, dst (also similar to memset)

Intel x86:
• REP MOVSB

‒ src = DS:ESI (x86-64 64-bit: DS:RSI)
‒ dst = ES:EDI (x86-64 64-bit: ES:RDI)
‒ len = ECX (x86-64 64-bit: RCX)

Without restartable instructions, these instructions might never complete!

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Two other useful hardware-supported bits in each PTE:

• referenced bit: set in PTE by hardware when using this PTE for any virtual
to physical translation (helps in selecting a “good” victim page)

• dirty bit: set in PTE by hardware when using this PTE for a reference that
will modify contents of page (no need to write victim to disk if not dirty)

• Both bits should be cleared by the kernel for a new page on a page fault

Other Common, Useful Hardware Support

Page Frame Number (PFN)V prot R

“referenced”

D

“dirty”

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Page Replacement Algorithms
On a page fault, decide the “best” virtual page to evict to make room

• The kernel must bring the needed page into physical memory from disk

• So there must be some available physical page to read it into

• The page replacement algorithm decides which virtual page will be
replaced in physical memory with the needed page

‒ The page replacement algorithm selects the victim page

‒ The page replacement algorithm doesn’t actually do page replacement!

How can the kernel decide which page is “best” (or even a “good”) choice?

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Evaluating Page Replacement Algorithms
A page reference string is a list, in execution order, of the virtual page
numbers referenced during the execution of some program
• Could be recorded from an execution of the program
• Or could be generated by simulating the program’s execution

Can be used for comparing one page replacement algorithm to another
• How many page faults occur with this page reference string when using

page replacement Algorithm A vs. Algorithm B?
• We can compare many algorithms on many different page reference strings
• Only the virtual page numbers matter, not the full virtual addresses

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Page Replacement: Random
Select some virtual page in physical memory at random as the victim
• Easy to implement
• No extra information (e.g., history) to keep track of
• Freedom from always making a “bad” (or the “worst”) choice

But what about the principle of locality?
• Principle of locality is a good description of typical real program behavior
• Temporal locality and spatial locality
• We can often make better replacement decisions by exploiting the

assumption of locality

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

Page Replacement: Optimal (MIN or OPT)

Current VPN 2 341
PFN

05

Select the virtual page in physical memory whose next reference is the
farthest into the future (in the page reference string)
• Not implementable, but a good point of comparison

Example with page reference string
2 1 4 2 3 0 4 2 5 4

with 4 pages of physical memory, with all 4 pages starting empty

0 1 2 3

Total page faults = 4 + 2 = 6 No real algorithm can do better!

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

Page Replacement: First-in-First-out (FIFO)
Select the virtual page in physical memory that was brought into physical
memory longest ago

Example with the same page reference string:
2 1 4 2 3 0 4 2 5 4

0 1 2 3

Total page faults = 4 + 4 = 8 (2 more than when using MIN)

Current VPN 2 341
PFN

40 2 5

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Page Replacement: Least-Recently-Used (LRU)
Select the virtual page in physical memory that was last referenced
longest ago

Example with the same page reference string:
2 1 4 2 3 0 4 2 5 4

0 1 2 3

Total page faults = 4 + 2 = 6 (equal to when using MIN)

Current VPN 2 341
PFN

50

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

FIFO and LRU Implementation Issues
Implementing FIFO replacement is easy
• The kernel is involved in bringing each new virtual page into physical

memory
• The kernel can keep track of the relative ordering of these events since it

can see that ordering

But implementing LRU requires some kind of hardware support
• The kernel is only involved in (and thus can only see) references that

resulted in page faults
• Only the hardware is involved in each other reference, even though those

references affect the LRU ordering

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

LRU Hardware Implementation using Counters
Page reference string

2 1 4 2 3 0 4 2 5 4

0 1 2 3

The hardware must maintain the counter and have a place to save the
counter value associated with every single physical memory page!
• Too much space and time overhead

Current VPN 2 341
PFN

50

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) (2)(1) (4)(6)(9)(3)(7)

(5) (8)

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

LRU Hardware Implementation using Counters
Requires hardware support
• Hardware must increment the counter on each memory reference
• Hardware must store the current counter value for each physical memory

page, updated when that page is referenced
• Hardware must be able to tell the kernel, or the kernel must be able to

find, the minimum of these values to be the victim page
• And where are those counter values stored?

‒ Not compatible with the normal way that physical memory is packaged,
sold, and installed

‒ And must be fast memory for storing the counter values

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

LRU Hardware Implementation using a Stack
Page reference string

2 1 4 2 3 0 4 2 5 4

The hardware must store this stack somewhere and rearrange it with every
single memory reference!
• Too much space and time overhead

2 1
2

4
1
2

2
4
1

3
2
4
1

0
3
2
4
1

4
0
3
2

2
4
0
3

5
2
4
0
3

4
5
2
0

Stack

19

20

11

Copyright © 2025 David B. JohnsonCOMP 321 Page 21

LRU Hardware Implementation using a Stack
Requires hardware support
• Hardware must maintain (either push or reorder) the stack entries on each

memory reference
• High overhead (particularly for large number of physical memory pages) on

every memory reference
• Hardware must be able to tell the kernel, or the kernel must be able to

find, the value forced off the bottom, to be the victim page
• And where is this stack stored?

‒ Not compatible with the normal way that physical memory is packaged,
sold, and installed

‒ And must be fast memory for storing the stack

Copyright © 2025 David B. JohnsonCOMP 321 Page 22

Many Replacement Algorithms “Approximate” LRU
LRU is often the “best” basis for a page replacement algorithm
• LRU “approximates” predicting the future
• The principle of locality: temporal local (and spatial locality)
• Past behavior is a “good” predictor of future performance

But some problems
• LRU is not implementable in software (in any practical way)
• And so requires hardware support (that itself is not practical)

So use an approximation of an approximation of predicting the future!
• Many algorithms, and many variants of them

21

22

12

Copyright © 2025 David B. JohnsonCOMP 321 Page 23

Approximation: Reference-Bit-History Algorithm
At boot time
• Create an array of P unsigned integers, where P is the total number of

pages of physical memory, and initialize each integer to 0
• The number of bits in each of the integers is a tradeoff

Periodically (e.g., every k clock interrupts)
• For every page of physical memory that is in use as some virtual page:

‒ Shift the corresponding unsigned integer right by 1 bit
‒ Find the PTE for that virtual page
‒ Copy value of that PTE’s referenced bit to high order bit of that integer
‒ Clear that PTE’s referenced bit

Copyright © 2025 David B. JohnsonCOMP 321 Page 24

Reference-Bit-History Algorithm

Integer thus contains a history of sampled value of that page’s referenced bit

This scheme is also known as “Aging” or “Additional-Reference-Bits”

Page’s PTE

Unsigned integer
for this page

Then clear the referenced bit

23

24

13

Copyright © 2025 David B. JohnsonCOMP 321 Page 25

Reference-Bit-History Algorithm
Selecting the victim page
• The physical memory page corresponding to the global minimum

unsigned integer (one value for each page) is selected as the victim page
• Example: A < B if and only if:

• This means the recent history of page A and page B are the same, but in
the next-most recent sample time interval, B was referenced but A was not

Copyright © 2025 David B. JohnsonCOMP 321 Page 26

Reference-Bit-History Algorithm
This algorithm actually results in perfect LRU, except for
• It only keeps a limited number of bits of history

‒ If all bits of the unsigned integer for A and for B are the same, you can’t
tell which is LRU since you can’t compare at times earlier than that

‒ But the principle of locality only refers to “in the near future” (and thus
corresponding to in the recent past)

• It only samples the reference bits at periodic intervals
‒ If some bit (a reference bit sample) for A and for B are both 1, you can’t

order the references within that sampling interval
‒ But the principle of locality only refers to “in the near future,” not to an

exact ordering at an infinitely small time scale

25

26

14

Copyright © 2025 David B. JohnsonCOMP 321 Page 27

Approximation: Second-Chance / CLOCK Algorithm
A modified form of FIFO to make
it behave more “LRU-like”

Imagine all physical memory
pages arranged in a circular
list in FIFO order

• Like around the face of
a clock

• The “hand” of the clock
points to the FIFO oldest page

Copyright © 2025 David B. JohnsonCOMP 321 Page 28

Second-Chance / CLOCK Algorithm
Victim selection

victim = -1;
while (victim == -1) {

if (PTE[hand].ref == 1)
PTE[hand].ref = 0;

else
victim = hand;

advance hand;
}

If no victim is found in the first
full revolution, then the second
revolution is effectively pure FIFO

victim

27

28

15

Copyright © 2025 David B. JohnsonCOMP 321 Page 29

“Enhanced” Second-Chance
Prefer a victim page for which the PTE dirty bit is not set
• Avoids the expense of writing page to disk, so faster at least for this page fault
• On the first revolution of the hand

• After the first revolution of the hand, all referenced bits are now 0
‒ During the second revolution, victim is the first page for which dirty is 0

• On the third revolution, victim is the first page (thus pure FIFO)

DirtyReferenced
Victim page found, stop looking00
Do not change bits, advance the hand10
Set referenced = 0, advance the hand01
Set referenced = 0, advance the hand11

29

