Virtual Memory: Demand Paging

COMP 321

Dave Johnson

% RICE

COMP 321 Copyright © 2025 David B. Johnson Page 1

What We Have Done So Far with Paging

* An operating system creates abstractions

* Use hardware support for paging in order to make physical pages appear to
be where we want them to appear in the virtual address space

* The operating system kernel creates page tables, and the hardware uses them
* You can use any available physical page for any need
* Eliminates external fragmentation

* Internal fragmentation generally limited to less than page size

COMP 321 Copyright © 2025 David B. Johnson Page 2

What is New with Demand Paging?

* Extend this abstraction to make it appear that we have more total memory
than we really have

* Uses essentially the same paging hardware we’ve been using

* The “trick” is that not all pages of “memory” need to be in physical
memory at once

* The rest of the “memory” is actually stored on disk (called “backing store”)
* Pages are moved from disk into physical memory as needed (on demand)

* Physical memory is effectively now just a cache containing a subset of all
virtual pages

COMP 321 Copyright © 2025 David B. Johnson Page 3

Assumption: The Principle of Locality

Temporal locality

* An executing program is likely to reference the same memory location
again in the near future

* Examples: a variable used in a loop, the instructions within the loop,
or a frequently used function

Spatial locality

* An executing program is likely to reference nearby memory locations in
the near future

* Examples: Nearby entries in same array or struct, nearby instructions,
other parts of the same page

COMP 321 Copyright © 2025 David B. Johnson Page 4

Hardware Requirements: Support in PTE Format

The “valid” bit in each PTE:

V| prot Page Frame Number (PFN)

* The kernel sets valid = 0 in the PTE if that page is not in physical memory

* Any use of a virtual address within this page by software thus causes an
exception
—The kernel can then read the page from disk into physical memory
— This type of exception is referred to as a “page fault’ — but the
hardware does not know what a “page fault” or demand paging is!

* The kernel must also somehow keep track of why the valid bit was set to 0

COMP 321 Copyright © 2025 David B. Johnson Page 5

Basic Handling for a Page Fault

* The hardware checks PTE valid bit when translating virtual to physical address
* If valid == 0, then the hardware generates an exception

—The hardware doesn’t know what a “page fault” is!

—The kernel figures out that this is a page fault and blocks the process

—If no free physical page is available, the kernel selects some virtual page to
evict from physical memory to make room (called the “victim” page)

o The kernel writes the victim virtual page contents to disk
o The kernel clears the valid bit in victim page’s PTE
—The kernel sets the valid bit and updates pfn in needed virtual page’s PTE
—The kernel reads the needed virtual page from disk into that physical page
—The kernel unblocks the process
* Upon return, hardware re-executes the instruction that caused the page fault

COMP 321 Copyright © 2025 David B. Johnson Page 6

Hardware Requirements: Restartable Instructions

The CPU must have “restartable instructions” (for all instructions):
* VAX example: MOVL (R1)+, -(R2)

— Moves “longword” (32 bits) from memory pointed to by register R1
(post-increment) to (pre-decrement) memory now pointed to by register R2

—Equivalentin Cto: *--R2 = *R1++

A 0x421C
B 0x4218
R1 9 C 0x4214
D 0x4210
Moves Cto Y
R2 9 X 0x123C
Y 0x1238
Z 0x1234
COMP 321 Copyright © 2025 David B. Johnson Page 7

Hardware Requirements: Restartable Instructions

* What if a page fault occurs when writing to memory where R2 now points?
* The PC register still points to this same MOVL instruction

* Hardware must not increment R1 again/decrement R2 again after page fault

— Hardware either first undoes side-effects, or remembers which have
been done so it does not redo them

A 0x421C
B 0x4218
R1 > C 0x4214
D 0x4210
R2 > X 0x123C
Y 0x1238
Z 0x1234

COMP 321 Copyright © 2025 David B. Johnson Page 8

Other Examples for Restartable Instructions

VAX:
* MOVC3 len, src, dst (similar to memcpy)
* MOVCS srclen, src, fill, dstlen, dst (also similar to memset)
Intel x86:
* REP MOVSB
—src = DS:ESI (x86-64 64-bit: DS:RSI)
—dst = ES:EDI (x86-64 64-bit: ES:RDI)
—len = ECX (x86-64 64-bit: RCX)

Without restartable instructions, these instructions might never complete!

COMP 321 Copyright © 2025 David B. Johnson Page 9

Other Common, Useful Hardware Support

Two other useful hardware-supported bits in each PTE:

V| prot Page Frame Number (PFN)

R{D
* referenced bit: set in PTE by hardware when using this PTE for any virtual
to physical translation (helps in selecting a “good” victim page)

“referenced” “dirty”

* dirty bit: set in PTE by hardware when using this PTE for a reference that
will modify contents of page (no need to write victim to disk if not dirty)

* Both bits should be cleared by the kernel for a new page on a page fault

COMP 321 Copyright © 2025 David B. Johnson Page 10

10

Page Replacement Algorithms

On a page fault, decide the “best” virtual page to evict to make room
* The kernel must bring the needed page into physical memory from disk
* So there must be some available physical page to read it into

* The page replacement algorithm decides which virtual page will be
replaced in physical memory with the needed page

—The page replacement algorithm selects the victim page

—The page replacement algorithm doesn’t actually do page replacement!

How can the kernel decide which page is “best” (or even a “good”) choice?

COMP 321 Copyright © 2025 David B. Johnson Page 11

11

Evaluating Page Replacement Algorithms

A page reference string is a list, in execution order, of the virtual page
numbers referenced during the execution of some program

* Could be recorded from an execution of the program
* Or could be generated by simulating the program’s execution

Can be used for comparing one page replacement algorithm to another

* How many page faults occur with this page reference string when using
page replacement Algorithm A vs. Algorithm B?

* We can compare many algorithms on many different page reference strings
* Only the virtual page numbers matter, not the full virtual addresses

COMP 321 Copyright © 2025 David B. Johnson Page 12

12

Page Replacement: Random

Select some virtual page in physical memory at random as the victim
* Easy to implement

* No extra information (e.g., history) to keep track of

* Freedom from always making a “bad” (or the “worst”) choice

But what about the principle of locality?
* Principle of locality is a good description of typical real program behavior
* Temporal locality and spatial locality

* We can often make better replacement decisions by exploiting the
assumption of locality

COMP 321 Copyright © 2025 David B. Johnson Page 13

13

Page Replacement: Optimal (MIN or OPT)

Select the virtual page in physical memory whose next reference is the
farthest into the future (in the page reference string)

* Not implementable, but a good point of comparison

Example with page reference string

DO®20@4 25 4

with 4 pages of physical memory, with all 4 pages starting empty

PFN o 1 2 3
Current VPN 2 1 4 3
5 0

Total page faults=4+2=6 No real algorithm can do better!

COMP 321 Copyright © 2025 David B. Johnson Page 14

14

Page Replacement: First-in-First-out (FIFO)

Select the virtual page in physical memory that was brought into physical
memory longest ago

Example with the same page reference string:

@O®2 O+ @E®

PFN 0O 1 2 3

Current VPN 2 1 4 3
0 2 5 4

Total page faults=4+4=8 (2 more than when using MIN)

COMP 321 Copyright © 2025 David B. Johnson Page 15

15

Page Replacement: Least-Recently-Used (LRU)

Select the virtual page in physical memory that was last referenced
longest ago

Example with the same page reference string:

DO®20@4 24

PFN o 1 2 3
Current VPN 2 1 4 3
0 5
Total page faults=4+2=6 (equal to when using MIN)

COMP 321 Copyright © 2025 David B. Johnson Page 16

16

FIFO and LRU Implementation Issues

Implementing FIFO replacement is easy

* The kernel is involved in bringing each new virtual page into physical
memory

* The kernel can keep track of the relative ordering of these events since it
can see that ordering

But implementing LRU requires some kind of hardware support

* The kernel is only involved in (and thus can only see) references that
resulted in page faults

* Only the hardware is involved in each other reference, even though those
references affect the LRU ordering

COMP 321 Copyright © 2025 David B. Johnson Page 17

17

LRU Hardware Implementation using Counters

Page reference string

DO®23©@4 2 ()4

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

PFN 0 1 2 3

Current VPN 2 1 4 3
(7) (1) (9) (4)

0 5
(5) (8)

The hardware must maintain the counter and have a place to save the
counter value associated with every single physical memory page!

* Too much space and time overhead

COMP 321 Copyright © 2025 David B. Johnson Page 18

18

LRU Hardware Implementation using Counters

Requires hardware support
* Hardware must increment the counter on each memory reference

* Hardware must store the current counter value for each physical memory
page, updated when that page is referenced

* Hardware must be able to tell the kernel, or the kernel must be able to
find, the minimum of these values to be the victim page
* And where are those counter values stored?

— Not compatible with the normal way that physical memory is packaged,
sold, and installed

— And must be fast memory for storing the counter values

COMP 321 Copyright © 2025 David B. Johnson Page 19

19
LRU Hardware Implementation using a Stack
Page reference string
QO®20@4 234
Stack 2 1 4 2 3 0 4 2 5 4
2 142 3 04 25
214 2 3 0 4 2
142 3 00
1 3
The hardware must store this stack somewhere and rearrange it with every
single memory reference!
* Too much space and time overhead
COMP 321 Copyright © 2025 David B. Johnson Page 20
20

10

LRU Hardware Implementation using a Stack

Requires hardware support

* Hardware must maintain (either push or reorder) the stack entries on each
memory reference

* High overhead (particularly for large number of physical memory pages) on
every memory reference

* Hardware must be able to tell the kernel, or the kernel must be able to
find, the value forced off the bottom, to be the victim page

* And where is this stack stored?

— Not compatible with the normal way that physical memory is packaged,
sold, and installed

— And must be fast memory for storing the stack

COMP 321 Copyright © 2025 David B. Johnson Page 21

21

Many Replacement Algorithms “Approximate” LRU

LRU is often the “best” basis for a page replacement algorithm
* LRU “approximates” predicting the future

* The principle of locality: temporal local (and spatial locality)

* Past behavior is a “good” predictor of future performance

But some problems
* LRU is not implementable in software (in any practical way)
* And so requires hardware support (that itself is not practical)

So use an approximation of an approximation of predicting the future!
* Many algorithms, and many variants of them

COMP 321 Copyright © 2025 David B. Johnson Page 22

22

11

Approximation: Reference-Bit-History Algorithm

At boot time

* Create an array of P unsigned integers, where P is the total number of
pages of physical memory, and initialize each integer to 0

* The number of bits in each of the integers is a tradeoff

Periodically (e.g., every k clock interrupts)

* For every page of physical memory that is in use as some virtual page:
— Shift the corresponding unsigned integer right by 1 bit
— Find the PTE for that virtual page
— Copy value of that PTE’s referenced bit to high order bit of that integer
— Clear that PTE’s referenced bit

COMP 321 Copyright © 2025 David B. Johnson Page 23

23
Reference-Bit-History Algorithm
valid
referenced
dirty
[prot [{] pfn | Page’s PTE
Then clear the referenced bit
Unsianed i (XOMONOYONYY N\f\f\vﬂ(\ﬂq et
nsigned integer row las
for this page 1|1|0({1|0|1|0| « « « |1]{0(1|0|0|1 |1 b exay
Integer thus contains a history of sampled value of that page’s referenced bit
This scheme is also known as “Aging” or “Additional-Reference-Bits”
COMP 321 Copyright © 2025 David B. Johnson Page 24
24

12

Reference-Bit-History Algorithm

Selecting the victim page

* The physical memory page corresponding to the global minimum
unsigned integer (one value for each page) is selected as the victim page

* Example: A < B if and only if:

A: [1|1]0]1]0|1]0|1{1|0|1[O|X|X|X|X|X]| o

B: |1({1|0{1|0{1|0{1|1{0|1[1|X|X|X|X|X]| e e«
L J L J
all bits between A and B match bit values do not matter

* This means the recent history of page A and page B are the same, but in
the next-most recent sample time interval, B was referenced but A was not

COMP 321 Copyright © 2025 David B. Johnson Page 25

25

Reference-Bit-History Algorithm

This algorithm actually results in perfect LRU, except for
* It only keeps a limited number of bits of history

- If all bits of the unsigned integer for A and for B are the same, you can’t
tell which is LRU since you can’t compare at times earlier than that

— But the principle of locality only refers to “in the near future” (and thus
corresponding to in the recent past)

* |t only samples the reference bits at periodic intervals
— If some bit (a reference bit sample) for A and for B are both 1, you can’t
order the references within that sampling interval
— But the principle of locality only refers to “in the near future,” not to an
exact ordering at an infinitely small time scale

COMP 321 Copyright © 2025 David B. Johnson Page 26

26

13

Approximation: Second-Chance / CLOCK Algorithm
A modified form of FIFO to make FIFQ nawest
it behave more “LRU-like” _—

Y g

FIFO oldest

Imagine all physical memory
pages arranged in a circular f
list in FIFO order

* Like around the face of
a clock

* The “hand” of the clock
points to the FIFO oldest page

o\

V\/

COMP 321 Copyright © 2025 David B. Johnson Page 27

27

Second-Chance / CLOCK Algorithm

. 4. . FIFO newest
Victim selection

victim = -1; "
while (victim ==-1) { Va

if (PTE[hand].ref == 1)
PTE[hand].ref = O; /4 \'

FIFO oldest

victim

else

victim = hand; >
advance hand; None
} \ possible /

victim

If no victim is found in the first
full revolution, then the second
revolution is effectively pure FIFO Y [1

COMP 321 Copyright © 2025 David B. Johnson Page 28

28

14

“Enhanced” Second-Chance

Prefer a victim page for which the PTE dirty bit is not set
* Avoids the expense of writing page to disk, so faster at least for this page fault
* On the first revolution of the hand

Referenced Dirty

0 0 Victim page found, stop looking

0 1 Do not change bits, advance the hand
1 0 Set referenced = 0, advance the hand
1 1 Set referenced = 0, advance the hand

 After the first revolution of the hand, all referenced bits are now 0
— During the second revolution, victim is the first page for which dirty is O
* On the third revolution, victim is the first page (thus pure FIFO)

COMP 321 Copyright © 2025 David B. Johnson Page 29

