
1

Copyright © 2025  David B. JohnsonCOMP 321 Page 1

Other Uses of Paging Support

COMP 321

Dave Johnson

Copyright © 2025  David B. JohnsonCOMP 321 Page 2

Remapping
• Can map any physical page to appear anywhere in process’s address space
• Can make any physical pages appear to be contiguous in virtual memory
• Thus, no external fragmentation
• Memory allocation is easy, just allocate any available physical page
• Can easily grow a process’s virtual address space
• Can make, e.g., stack and heap very, very far apart at almost no cost

Demand Paging
• Can make process’s virtual address space appear very large
• Can run programs (much) larger than physical memory

Some Advantages of Paging (So Far)

1

2



2

Copyright © 2025  David B. JohnsonCOMP 321 Page 3

Using same hardware and building on same kernel software

Faster, more efficient operation of the existing system
• Reducing consumption of physical memory
• Reducing CPU time to effectively implement some operations
• Reducing disk storage and disk I/O in implementation of some operations

Provide new facilities for user processes to make use of
• New memory management operations
• More flexible, more efficient memory management
• New memory management functionality

Other Uses of Paging Support

Copyright © 2025  David B. JohnsonCOMP 321 Page 4

The old way:
• The process’s page table is built, include PTEs for all pages of text

‒ Allocate a new physical page for each text page
‒ For each page, PTE = valid, protection = read/execute

• Read all of the text into this new area of virtual address space
• And, finally, return from execve() to run the new program

Problems:
• Requires physical memory, even for parts of text that never get executed
• Requires disk read for all of that text, too
• Slows the startup of the new program

Loading Text Pages on execve()

3

4



3

Copyright © 2025  David B. JohnsonCOMP 321 Page 5

Load each page of text on demand from the program file
• The process’s page table is built, include PTEs for all pages of text

‒ Do not allocate any physical pages for any of the text
‒ For each page, valid = 0, protection = read/execute
‒ Kernel must remember why it set valid = 0
‒ Kernel must remember the executable file and where each text page is
‒ Return from execve() and start the new program running

Each individual text page gets loaded on demand in response to page fault
• Allocate a new physical page, PTE valid = 1, read in only that one text page
• If text page is chosen as victim, no need to write out the page, and it will be 

reloaded later on demand the same way when (if) it is next accessed again

Faster, More Efficient Loading of Text on execve()

Copyright © 2025  David B. JohnsonCOMP 321 Page 6

Need to protect against the text file changing while we’re running it
• The old way, we no longer need the original text file, since we’ve read it all 

into physical memory already
• The new way, the program could run some pages of the old version of the 

text, some pages of the new version of the text
‒ Almost certainly not going to work correctly (probably crashes)

Solution
• The kernel keeps track of which program files are currently running
• If new open() for O_WRONLY or O_RDWR, or O_TRUNC, return ETXTBSY
• If new execve() while some file descriptor open for O_WRONLY or 

O_RDWR, return ETXTBSY

What if the Text File Is Modified While Running?

5

6



4

Copyright © 2025  David B. JohnsonCOMP 321 Page 7

Since a text page is read-only, can easily share it between all processes 
currently running that same program
• Only one copy of that page is needed in physical memory, rather than

(up to) one copy per process running it
‒ Example: Consider the number of processes running the shell!

• This is an “easy” extension
‒ The kernel already needs to keep track of which program files are 

currently running – to prevent modification to one while it is running 
and demand loading from it

‒ On an execve() for a program already being run by one or more other 
process – the kernel sets up calling process’s PTEs to use the same PFNs

Sharing Text Pages Between Processes

Copyright © 2025  David B. JohnsonCOMP 321 Page 8

The old way:
• The library is an “archive” of individual “.o” object files
• The linker embeds each of those needed object files statically in the 

executable program (e.g., most programs use printf)

Problems:
• Every program on disk has embedded its own separate copy of many of 

those object files
‒ Wasting disk space

• Every program in memory has a separate copy, too
‒ Wasting physical memory

Supporting Procedure Libraries

7

8



5

Copyright © 2025  David B. JohnsonCOMP 321 Page 9

Make the library shared in memory among all processes using it
• Link the library now instead as a single combined object file

‒ Example on CLEAR: libc.so.6 ≈ 2MB with 2344 external text symbols
• Map the entire library into a process’s virtual address space

‒ The kernel keeps a list of objects mapped into memory (an extension of 
the list of programs running for demand loading and sharing text)

‒ If that library is already mapped into memory, new process’s PTEs use 
the same PFNs, so the pages are shared in physical memory

‒ The virtual address of the library may (but doesn’t have to be) the same 
in each process, since the library is compiled and linked as “position 
independent code” (PIC)

Improvement: Shared Libraries

Copyright © 2025  David B. JohnsonCOMP 321 Page 10

The old way:
• The process’s page table is built, including PTEs for all pages of bss

‒ Allocate a new physical page for each text page
‒ For each page, PTE = valid, protection = read/write

• Initialize all of this new area to be full of 0’s (e.g., memset())
• And, finally, return from execve() to run the new program

Problems:
• Requires physical memory, even for parts of bss that never get used
• Requires CPU time to zero it all out, too
• Slows the startup of the new program

Setting Up bss Pages on execve()

9

10



6

Copyright © 2025  David B. JohnsonCOMP 321 Page 11

Allocate and zero out each page of bss on demand
• The process’s page table is built, including PTEs for all pages of bss

‒ Do not allocate any physical pages for any of the bss
‒ For each bss page, PTE valid = 0, protection = read/write
‒ Kernel must remember why it set valid = 0
‒ Return from execve() and start the new program running

Each individual bss page gets handled on demand in response to page fault
• Allocate a new physical page, PTE valid = 1, zero out only that one bss page
• If such a bss page is chosen as victim, it gets paged out to the paging file, 

the same as the old way, as if it had not been set up on demand
• Technique is called “demand zero” or “zero-fill on demand”

Faster, More Efficient Setting up bss on execve()

Copyright © 2025  David B. JohnsonCOMP 321 Page 12

The old way:
• The child’s page table is built, including PTEs for all pages as in the parent

‒ Allocate a new physical page for each valid page
‒ For each page, child PTE valid = 1, protection = same as in parent
‒ Copy that page contents from parent’s address space into child’s

• And, finally, return from fork() to allow child to run as a new process

Problems:
• Requires physical memory, even for pages never used by the child
• Requires CPU time for copying all of that, too
• Slows the startup of the new process
• Extreme (but common) example: fork() “immediately” followed by execve()

Copying Memory from Parent to Child on fork()

11

12



7

Copyright © 2025  David B. JohnsonCOMP 321 Page 13

Allocate physical memory for and copy each page only on demand
• The child’s page table is built, including PTEs for all pages as in the parent

‒ Do not allocate any new physical pages for any of the child’s pages
‒ The child’s PTEs share physical pages with the parent (same PFNs)
‒ Return from fork() to allow child to run as a new process

The technique is called “copy-on-write” (COW)
• As long as those shared pages aren’t modified, they can be shared
• OK for text pages, but what about data pages, which might get modified?

‒ Kernel turns off PTE write protection bit when setting up copy-on-write
‒ Attempt to modify page causes hardware exception, and the kernel makes 

a copy of just that single page and reenables write in PTE protection

Faster, More Efficient fork()

Copyright © 2025  David B. JohnsonCOMP 321 Page 14

For each copy-on-write shared physical page
• The kernel keeps track of the number of times that page is currently shared

‒ After a fork, each page is now shared two times (parent and child)
‒ But if either process forks again, the count is now 3, and so on

• The kernel disables write access to the page by turning off bit in all PTEs
‒ Each sharing process has its own page table and thus its own PTE for it

• If some write is attempted, that will cause a hardware exception
‒ If the page is still being shared (count is > 1), the kernel allocates a new 

physical page, copies the shared page into it, and decrements count
‒ The kernel reenables write access in PTE for that page in that process
‒ The kernel returns from exception and hardware re-executes instruction

Copy-on-Write Details

13

14



8

Copyright © 2025  David B. JohnsonCOMP 321 Page 15

Map (part of) a file (or something else) into your virtual address space
• “fd” must be open to the file (or whatever) you want to map in from
• “addr” and “offset” must be multiple of PAGESIZE, but “length” need not be
• All pages covered by any part of [addr, addr+length) are mapped

‒ if addr == NULL, the kernel chooses the virtual address
• “prot” should be PROT_NONE (no access) or the logical “or” of

‒ PROT_READ – allow read (e.g., LOAD) accesses from the page
‒ PROT_WRITE – allow write (e.g., STORE) accesses to the page
‒ PROT_EXEC – allow CPU execution of instructions from the page

• mmap() returns the virtual address at which the memory was mapped

The mmap() Kernel Call

void  *mmap(void  addr[.length],  size_t length,  int  prot,  int  flags,  
int  fd,  off_t offset);

Copyright © 2025  David B. JohnsonCOMP 321 Page 16

void  *mmap(void  addr,  size_t length,  int  prot, 
int  flags,  int  fd,  off_t offset);

The mmap() Kernel Call

15

16



9

Copyright © 2025  David B. JohnsonCOMP 321 Page 17

The “flags” argument can specify many different things as the “or” of
• The sharing of the mapping with other processes, as either of

‒ MAP_SHARED – Modifications to the memory are visible to other 
processes mapping this file and are eventually reflected in the file

‒ MAP_PRIVATE – Modifications to the memory are not visible to other 
processes mapping to this file, and the file contents is not changed

• What to map to (the default is to map to a file)
‒ MAP_ANONYMOUS (or MAP_ANON) – instead of a file, map to newly 

created “anonymous” memory (i.e., map to “nothing”)
• Restrictions on the virtual address to map to

‒ MAP_FIXED – “addr” is normally treated as a “hint” by the kernel, but 
instead, the mapping must be exactly at virtual address addr

The mmap() Kernel Call

Copyright © 2025  David B. JohnsonCOMP 321 Page 18

int main(void)
{

char  *addr1,  *addr2;
int  fd1,  fd2;
struct stat  sb;
size_t i,   len;

fd1 = open("input.txt", O_RDONLY);
fd2 = creat("output.txt", 0666);

fstat(fd1, &sb);
len = sb.st_size;

A Simple (Sort of Silly) mmap() Example Program

addr1 = mmap(NULL, 
len,  PROT_READ,
MAP_PRIVATE,  fd1,  0);

addr2 = malloc(len);

for (i = 0; i < len; i++)
addr2[i] = toupper(addr1[i]);

write(fd2, addr2, len);

exit(0);
}

17

18



10

Copyright © 2025  David B. JohnsonCOMP 321 Page 19

Remove a mapping from your virtual address space
• Make virtual memory starting at “addr” for length of “length” invalid

‒ Any future access will cause a SIGSEGV
• “addr” must be a multiple of PAGESIZE, but “length” need not be
• All pages covered by any part of [addr, addr+length) are unmapped

The munmap() Kernel Call

int  munmap(void addr[.length],  size_t length);

Copyright © 2025  David B. JohnsonCOMP 321 Page 20

Change the protection on a mapping in your virtual address space
• Change page protection starting at “addr” for length of “length” invalid
• “addr” must be a multiple of PAGESIZE, but “length” need not be
• All pages covered in any part by [addr, addr+length) are changed
• “prot” should be PROT_NONE (no access) or the logical “or” of

‒ PROT_READ – allow read (e.g., LOAD) accesses from the page
‒ PROT_WRITE – allow write (e.g., STORE) accesses to the page
‒ PROT_EXEC – allow CPU execution of instructions from the page

The mprotect() Kernel Call

int  mprotect(void  addr[.len],  size_t len,  int  prot);

19

20



11

Copyright © 2025  David B. JohnsonCOMP 321 Page 21

Synchronize the file with the memory mapping
• Make sure the disk copy is up-to-date with changes in memory copy
• “addr” must be a multiple of PAGESIZE, but “length” need not be
• All pages covered in any part by [addr, addr+length) are updated
• “flags” should be either

‒ MS_ASYNC – asynchronous update, returns immediately
‒ MS_SYNC – synchronous update, does no return until updated on disk

• Happens implicitly when munmap() is used on these pages
‒ And thus happens implicitly on _exit()

The msync() Kernel Call

int  msync(void  addr[.length],  size_t length,  int  flags);  

Copyright © 2025  David B. JohnsonCOMP 321 Page 22

Allows the process to advise the kernel on virtual memory page accesses
• Use of madvise() is never required
• It is optional and just gives “advice” to the kernel

‒ “The great thing about advice is you don’t have to take it”
‒ But if used carefully, madvise() can improve performance for your 

process and/or for the system as a whole
• “addr” must be a multiple of PAGESIZE, but “length” need not be
• The advise covers all pages covered in any part by [addr, addr+length)

The madvise() Kernel Call

int  madvise(void  addr[.length],  size_t length,  int  advice);  

21

22



12

Copyright © 2025  David B. JohnsonCOMP 321 Page 23

There are many (mostly non-standard) options for “advice”, but mainly
• MADV_NORMAL – no special treatment (the default)
• MADV_RANDOM – expect page references to be in “random” order

‒ Page read-ahead by the kernel may not be helpful
• MADV_SEQUENTIAL – expect page references to be in sequential order

‒ Page read-ahead by the kernel may be particularly helpful
‒ And/or consider preceding page on a page fault to be a good victim

• MADV_WILLNEED – expect references in the near future
‒ It may be a good idea for the kernel to pre-page in some pages
‒ And/or make these pages less likely to be chosen as a victim

• MADV_DONTNEED – do not expect references in the near future
‒ These pages may be good to use as a victim on page replacement

The madvise() Kernel Call

23


