
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Some Other Topics in
Demand Paging

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Global vs. Local Replacement
When selecting a victim to evict in handling a page fault

• Global replacement: Select the globally “best” victim
‒ Even if that physical page is in use for a virtual page belonging to some

other process
‒ Number of physical pages each process has will dynamically grow

and shrink

• Local replacement: Select the “best” among pages in own address space
‒ Evict one of your own virtual pages to make room for another virtual

page you need now
‒ Number of physical pages each process has remains constant from

before to after any page fault

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Global vs. Local Replacement
Example: CLOCK page replacement

• Global replacement: Select the globally “best” victim
‒ A single global set of the algorithm’s data structures
‒ One global FIFO-ordered list of all physical pages, one global clock hand

• Local replacement: Select the “best” among pages in own address space
‒ A separate set of the algorithm’s data structures for each process
‒ In (or attached to) each PCB: FIFO-ordered list of just that process’s

physical pages, and a clock hand just for that list

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Global vs. Local Replacement
So which is better, global replacement or local replacement?

• Global replacement: Select the globally “best” victim
‒ Somewhat simpler to implement
‒ Generally better overall utilization of memory
‒ More common than local replacement

• Local replacement: Select the “best” among pages in own address space
‒ Arguably more “fair” (for at least one definition of “fair”)
‒ The behavior of one process can’t cause another process to get more

page faults

VAX example: VMS used local FIFO, Unix used global CLOCK

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

The Working Set Model
How many physical pages does a process “need” when executing?
• Just 1 text page, 1 data page, 1 stack page?
• What about a loop spanning across a text page boundary?
• This number is important, such as if using local page replacement

The “working set” for a process is those pages it is “actively” using
• The definition of “actively” is related to “recently used” (temporal locality

means “likely to use again in the near future”)
• Example: Using reference-bit-history, any page for which most significant k

bits are all 0 could be considered no longer part of the working set

0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 . . .

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Does a process have enough physical pages to hold its working set?
• If yes: Few page faults
• If no: Many page faults

Thrashing: spending more time page faulting than executing program

Effect of the Working Set

Degree of Multiprogramming

CP
U

 U
til

iza
tio

n

Thrashing

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Formal Definition of the Working Set
The working set of some process, written as WS(t, w)

WS(t, w) = the virtual pages referenced by the process over this time

How do we measure time?
• Elapsed real time, elapsed CPU time, number of instructions executed?

How big should w be?
• 1/100 second, 1/10 second, 1/2 second, … ?

Principle of locality: any “reasonable” answers should make little difference

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Using Working Set to Control Multiprogramming
OS can use working set sizes to control the degree of multiprogramming
• Keep track of the size of every process’s working set
• Compute the total size of all process working sets
• If the total < the size of all of physical memory

‒ In a batch (non-interactive) system, can start a new job
• If the total > the size of all of physical memory

‒ The degree of multiprogramming is too high (thrashing)
‒ Entirely swap out some process for a short while

o Reduces demand on physical memory so other processes run much
more efficiently

o Cycle among processes, swapping each out for a short while in turn

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

An easier, more efficient way to accomplish the same thing

If all processes above top line (or none below bottom line), swap out a process

The Page Fault Frequency Strategy

Could decrease number of physical pages allocated
(very low frequency of page faults)

Process needs more physical pages allocated
(very high frequency of page faults)

Process’s current working set size

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

A Way to Find the PTE for Any Given PFN
Often need to be able to
find the PTE for a given PFN
• Example: CLOCK or

reference-bit-history
page replacement

At boot time
• The kernel creates an array

of size P = # physical pages
• P is a constant while the

computer is up and running

Store address of PTE for
each physical page i
at index i in the array

Or store VPN and address
of the page table or PCB
for each physical page i
at index i in the array

If multiple virtual pages
mapped to some physical
page, store address of
beginning of a linked list of
entries for each physical
page i at index i in the array

P = # of physical pages

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Background: Direct Memory Access (DMA)
Making I/O faster (less CPU overhead)
• Interrupts help reduce CPU overhead, but still one interrupt per character
• Example: read a sector from disk (4096 bytes = 4096 interrupts)

Hardware support for Direct Memory Access (DMA) for I/O
• OS gives to DMA controller hardware for the target I/O device

‒ Memory address of a buffer (an area in memory)
‒ Byte count size of that buffer
‒ An operation to perform (e.g., READ or WRITE)

• DMA controller hardware does the entire transfer from/to the memory buffer
• Only one interrupt at completion of the entire command

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Virtual Memory Mapping vs. DMA
Normal DMA hardware requires a physically contiguous buffer
• Buffer address, byte count, command (e.g., READ or WRITE)
• But buffer might be only virtually contiguous, not physically contiguous

Two possible solutions
• Only do DMA from kernel buffers known to be physically contiguous
• Or improvement to the DMA hardware: scatter/gather DMA

‒ Give hardware a list of multiple (buffer address, byte count) entries,
followed by the command

‒ DMA “gathers” data on output, “scatters” data on input
‒ Still a single I/O command and one interrupt for the whole buffer list

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Demand Paging vs. DMA
What if a page involved in DMA is selected as
the victim on a page fault?
• Output uses the wrong data from the

wrong virtual page
• Input overwrites the wrong data in the

wrong virtual page

A simple solution
• Keep a count, for each physical page, of the number

of times that page is currently involved in DMA
• Skip pages with count > 0 in victim selection

(page is “pinned” in physical memory)

P = # of physical pages

13

