
Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Additional I/O Functions

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Earlier, we covered basics of system-level I/O talking directly to the kernel
• Opening or creating a file return a file descriptor
• The current offset (or position) in the file of a file descriptor
• Reading and writing a file using a file descriptor
• Explicitly moving the file descriptor offset with lseek
• Closing a file descriptor
• Getting information with stat and fstat
• The effect of fork on file descriptors
• Using mmap to map a file’s data into virtual memory
• Sockets and computer networking basics
• I/O multiplexing and non-blocking I/O

What We’ve Done

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

A few additional I/O kernel calls
• Some I/O kernel calls needed, for example, by the shell

‒ I/O redirection
‒ pipes

Some details on library-level I/O
• Using Standard I/O
• Some basics of the implementation of Standard I/O

New This Time

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Assigns a new (additional) descriptor number to existing open file instance
• dup() returns the lowest numbered file descriptor number that is not

currently open in this process to something else – like open() does
• dup2() instead uses the specified newfd file descriptor number

‒ if newfd is already open, it is automatically closed first
• On return, both old and new file descriptors refer to the same shared open

file instance

Duplicating a File Descriptor

int dup(int oldfd);
int dup2(int oldfd, int newfd);

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

The Kernel Data Structures – Doing dup(0)

...

current fd offset
open fd flags
refcount = 1

protection & type
uid & gid

inode number 78
file size

refcount = 1

File Descriptor Table
(one table per process)

Open File Table
(shared by all process)

v-node Table
(shared by all process)

0

1

2

3

4

...
In

de
xe

d
by

 fd

NULL

NULL ...

...

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

The Kernel Data Structures – Doing dup(0)

...

current fd offset
open fd flags
refcount = 1

protection & type
uid & gid

inode number 78
file size

refcount = 1

File Descriptor Table
(one table per process)

Open File Table
(shared by all process)

v-node Table
(shared by all process)

0

1

2

3

4

...
In

de
xe

d
by

 fd

NULL ...

...

current fd offset
open fd flags
refcount = 2

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Example: redirecting standard output (command > file) the unsafe way

close(STDOUT_FILENO);
open(file, O_WRONLY);

• Doing open() will pick the lowest unused descriptor number, which here
should be STDOUT_FILENO

• But for a time, you have no open standard output file!

Doing it the correct, safe way
newfd = open(file, O_WRONLY);
dup2(newfd, STDOUT_FILENO);
close(newfd);

• dup2() closes old STDOUT_FILENO; then we close unneeded newfd

Using dup() or dup2() in the Shell

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Creates a “pipe” – a data channel for interprocess communication
• The pipe provides a unidirectional byte stream channel

‒ pipefd[0] is a file descriptor number open O_RDONLY to the pipe
(the “read end” of the pipe)

‒ pipefd[1] is a file descriptor number open O_WRONLY to the same pipe
(the “write end” of the pipe)

• Data written to the write end of the pipe is buffered in the kernel . . .
• . . . until read from the read end of the pipe

Creating a Process Pipeline

int pipefd[2];
int pipe(pipefd);

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

int main(void)
{

int pipefd[2];
int pid1, pid2;

pipe(pipefd);
if ((pid1 = fork()) == 0) {

dup2(pipefd[1], 1);
close(pipefd[0]);
close(pipefd[1]);
execl("/usr/bin/ls", "ls", NULL);

}

• The first child will exec “ls” to write into the pipe as its standard output
• The second child will exec “wc -l” to count the files in the current directory
• It is important to clean up (i.e., close) all unneeded fd’s for the pipe

Example – Running “ls | wc –l”
If ((pid2 = fork()) == 0) {

dup2(pipefd[0], 0);
close(pipefd[0]);
close(pipefd[1]);
execl("/usr/bin/wc", "wc", "-l", NULL);

}
close(pipefd[0]);
close(pipefd[1]);
waitpid(pid1, NULL, 0);
waitpid(pid2, NULL, 0);
exit(0);

}

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

This is actually the original implementation of pipes up through 4.1 BSD
• Calling pipe(pipefd) is equivalent to

pipefd[0] = open(create a new pipe file, O_RDONLY);
pipefd[1] = open(the same pipe file, O_WRONLY);

• Suppose offset0 = the offset on pipefd[0] file descriptor (read end)
• and suppose offset1 = the offset on pipefd[1] file descriptor (write end)
• The kernel makes sure this condition always holds: offset0 ≤ offset1

‒ If a read (thus offset0) tries to bypass offset1, the read blocks
‒ Once the writing process writes more (advancing offset1), then the

reading side is unblocked
• If offset0 == offset1, kernel truncates the pipe and sets offset0 = offset1 = 0
• Modern implementations are much more sophisticated (but equivalent)

One Way to Understand Pipe Behavior

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

What should happen when you read from an empty pipe?
• Suppose the first process has written 100 bytes into the pipe . . .
• . . . and the second process has read 100 bytes from the pipe
• The pipe is now empty (no buffered data), but another read from the pipe

now should not be treated as end of file on the pipe
‒ The other process might (sometime) still write more data into the pipe
‒ The two processes run asynchronously, so sometimes the ordering of

reads vs. writes may be different
• Reading from an empty pipe is only treated as end of file when

‒ You read and the pipe is empty, and
‒ No file descriptor is open anywhere that can write into the pipe

• The read then returns 0 = the number of bytes read

End of File on Reading From a Pipe

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Writing into a full pipe is not a problem
• The kernel will only buffer up to some limited number of bytes
• A write into the pipe then just blocks the writing process until after the

reading process has read some

What about a write into the pipe when no process can read it?
• Any write (or attempted write) into the pipe is an error

‒ If no file descriptor is open anywhere that can read from the pipe
• Causes a SIGPIPE signal in the writing process (default: terminates process)
• If SIGPIPE is ignored, or if it is caught but the signal handler returns, the

write to the pipe returns -1 with errno = EPIPE

Special Rules for Writing Into a Pipe

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Defined for many types of systems, not just for Unix/Linux

• A library that takes care of the details of system-level I/O

• Provides a (generally) simpler interface for I/O

• And (generally) takes into account system-level details to do the necessary
system-level I/O more efficiently (e.g., buffering and block sizes)

• But at the expense of another layer of software overhead to go through

• Interface is generally defined by #include <stdio.h>

• But that only defines the interface, the real procedures are in the C library

The Standard I/O Library

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

A “FILE *” represents a Standard I/O “stream”
• A “FILE *” is really just a pointer to a “FILE”

‒ A “FILE” is usually implemented as a C typedef for some struct
‒ (But it could be #define FILE struct whatever)

• Everything that Standard I/O needs to keep track of about that open
stream is stored inside that struct

‒ Passing the address of this struct to each Standard I/O operation on
that stream lets the implementation access the contents of that struct

• stdin, stdout, and stderr are predefined pointers to 3 of those structs
• You generally don’t have any reason to ever actually look at that struct
• (But I will talk a bit about it later to illustrate how Standard I/O works)

The Interface uses a “FILE *” Not an Integer fd

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

• fopen() opens the pathname file for the given mode
• freopen() uses the existing stream but reopens as a new pathname

‒ If pathname is NULL, uses the same pathname
‒ The new mode is given by mode

• fdopen() opens a new stream on something already open as descriptor fd
• mode is either “r” (file must exist) or “w” (creates if the file doesn’t exist)

‒ or many other options on different systems (see “man 3 fopen”)

Opening a Standard I/O Stream

FILE *fopen(const char *restrict pathname, const char *restrict mode);
FILE *freopen(const char *restrict pathname, const char *restrict mode,

FILE *restrict stream);
FILE *fdopen(int fd, const char *mode);

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Standard I/O offers choice of three types of buffering for each stream
• Fully buffered

‒ A stream has some fixed buffer size
‒ Output flushes by calling kernel I/O when the buffer fills up
‒ Input calls the kernel for more data when the buffer is used up

• Line buffered
‒ The buffer is flushed when outputting a newline character
‒ Or (of course) when the fixed-sized buffer fills up
‒ This is the default for a terminal

• Unbuffered
‒ Every I/O operation immediately calls the kernel to do it

Types of Standard I/O Buffering

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

The C library provides the isatty() function to check for this
• Returns 1 if fd is open to a terminal device, or 0 otherwise

But how can isatty() figure out if fd is open to a terminal?
• Remember tcgetpgrp() and tcsetpgrp() to get/set terminal process group

‒ Really does kernel ioctl TIOCGPGRP or TIOCSPGRP on that fd
• The tcgetattr() library call gets the terminal attributes for the given fd

‒ Really does kernel ioctl TIOCGETA on that fd
‒ Returns -1 with errno = ENOTTY if fd is not open to a terminal!

How Can Standard I/O Know If This Is a Terminal?

int isatty(int fd);

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

Can explicitly set the buffering of a stream after opening it
• setlinebuf() sets the stream to be line buffered
• setbuf() sets unbuffered (NULL) or buffered (pointer to BUFSIZE buffer)
• setvbuf() lets you also specify the buffer size, with mode of

‒ _IONBF = unbuffered
‒ _IOLBF = line buffered
‒ _IOFBF = fully buffered

Setting the Buffering for a Stream

void setlinebuf(FILE *stream);
void setbuf(FILE *restrict stream, char *restrict buf);
int setvbuf(FILE *restrict stream, char buf[restrict .size],

int mode, size_t size);

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

From Version 7 Unix (more recent versions are much more sophisticated)

extern struct _iobuf {
char *_ptr; // address for next character in the buffer
int _cnt; // count of remaining characters in the buffer
char *_base; // address of the buffer (of size BUFSIZ)
char _flag; // read and/or write, buffering mode, etc.
char _file; // the underlying kernel file descriptor number

};

#define FILE struct _iobuf

#define fileno(p) p->_file

A Simplified (But Real, But Old) Definition of FILE

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

Defined in /usr/include/stdio.h (this is from Version 7 Unix)

#define getc(p) (--(p)->_cnt>=0? *(p)->_ptr++&0377:_filbuf(p))

#define getchar() getc(stdin)

#define putc(x,p) (--(p)->_cnt>=0?
((int)(*(p)->_ptr++=(unsigned)(x))):_flsbuf((unsigned)(x),p))

#define putchar(x) putc(x,stdout)

Example Parts of Standard I/O Implementation

