
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Introduction to File Systems

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Hard Disks, Big(ger) and Small(er)

Photo: Wikimedia Commons and Ian Wilson

5.25” “full-height” vs. a
more modern 2.5” hard disk

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Really Old Hard Disks

Photo: Wikimedia Commons and Deutsche Fotothek

14” disk drives with removable
disk packs (sort of like a floppy disk,
but way before that time)

The fixed electronics was
the most expensive part

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Hard Disk Internals

Photo: Amazon.com and Western Digital (WD Blue WD20EZRZ 2 TB 3.5” SATA Hard Drive)

A modern 3.5” drive

… but they’re all basically
the same inside

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

The Same Basic Thing in Many Sizes

Photos: Wikimedia Commons

IBM and Hitachi “Microdrive” — 1 inch in diameter, but still the same inside

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Hard Disk (Side View)

rotation

surfaces

platters

spindle

read/write head arm
arms “seek” in and out together

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Hard Disk (Top View)

surface

platter

read/write head

arms

rotation

track

sector

cylinder = corresponding
track at the same seek
position on all surfaces

sector size = 4096 B
(older disks 512 B)

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Reading or Writing the Disk
Hardware can read or write only in granularity of whole sectors

Steps in reading or writing the disk
• Disk just keeps spinning in same direction at the same speed continuously

‒ (Except it can be stopped spinning to save power, but it’s very slow to
stop and restart spinning and become stable again)

• The disk must seek to the correct cylinder (move set of arms in or out)
• Start paying attention to correct head and thus correct surface (zero time)
• Wait for the beginning of the sector to rotate up to the head
• Transfer the bits of the sector, one by one, off of/onto the surface

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Performance of Reading or Writing the Disk
The disk must seek to the correct cylinder (move the set of arms in or out)
• Requires time for arms to start moving and to stop moving
• Requires time to heads based on distance (number of cylinders)

Wait for the beginning of the sector to rotate up to the head
• Depends only on the rotational speed (RPM) of the disk
• On average, this takes one half of time for a single revolution

Transfer the bits of the sector, one by one, off of/onto the surface
• Also depends on the number of sectors per track (i.e., one full rotation

time divided by the number of sectors per track)

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Some Example Hard Disk Characteristics

FastCommonOld

4 ms9 ms30 msAverage seek time

10,000 RPM5400 RPM3600 RPMRotational speed

6 ms11.11 ms16.66 msFull revolution time

3 ms5.55 ms8.33 msAverage rotation delay

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Solid State Drives (SSDs)
No moving parts (not mechanical, all electronic)

Photos: Amazon.com and Samsung (860 EVO 2.5” SATA interface and 970 EVO M.2 NVMe interface)

Two example 1 TB SSDs:

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Solid State Drives (SSDs)
• Many attach to the computer with same interface as a “traditional” disk drive
• Based on “flash memory” non-volatile storage
• Very different performance characteristics than with traditional hard disks
• Internally, storage is still organized in sectors (usually there called “pages”)
• Pages are grouped into “blocks” of, e.g., 32 to 128 pages
• Reading is easy, but writing requires the entire block to be erased first (slow)
• Blocks can only be erased a limited (but large) number of times
• Internal drive algorithms for block wear leveling, page remapping

Now common, but file systems still generally designed around traditional disks

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Types of File Access Patterns
Sequential access to data within a file
• System remembers an open file’s current position (offset) within the file
• Read or write by N bytes advances file’s current position by N bytes
• “Rewind” operation sets file’s current position to the beginning of file

Random (or direct) access to data within a file
• Every individual read or write can specify the file position to use
• Or can explicitly set (e,g., “lseek()”) to a new position in the file anytime

‒ Relative to the beginning of the file
‒ Relative to the open file’s current position in the file
‒ Relative to the end of the file

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

On-Disk File System Data Structures
The file system certainly keeps some data in memory as it runs

But hard disks (and thus file systems) can be very, very large
• A hard disk can store orders of magnitude more data than physical memory
• And there can be many (many!) individual files on the disk
• Impossible in general to store everything in memory

And data structures are also needed on-disk so they are permanent
• Don’t want to lose all data on a crash or power failure
• Also don’t want to lose even some kinds of data (such as keeping the data of

all files on disk but losing the names of the files on a crash or power failure)

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

Guidelines for On-Disk File System Data Structures
• On-disk file system data structures are “permanent” (good and bad)

‒ With memory, crash and reboot gives you fresh new data structures
‒ But data structures on disk are still there after a crash and reboot

• A tradeoff between simplicity and performance
‒ Want good performance, but be careful not to mess things up

• Put “related” things “near” each other on disk
‒ Classical disk scheduling no longer fully works, but it still helps

• Can’t use memory pointers (memory addresses) on disk
‒ Pointers recorded on disk no longer mean the same thing when read back
‒ Must link things together on disk some other way

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

File System “Blocks” vs. Hardware Disk Sectors
• Disk sectors are relatively small (512 bytes or 4096 bytes)
• File systems generally treat multiple sectors together as a file system “block”
• Power of 2 multiple, e.g., 2 consecutive sectors, 8 consecutive sectors, …
• Advantages

‒ Lowers bookkeeping overhead: keeping track of individual free blocks,
keeping track of the blocks that belong to each file

‒ Better performance, since keeps sectors of a file’s data more “together”
‒ Larger total file size possible for a given number of bits representing block

numbers (e.g., 16-bit block number means only 65,535 blocks can be used)
• Disadvantage

‒ Slight increase in internal fragmentation within each file

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

Overall Types of On-Disk Data Structures
Two general types of on-disk file system data structures

• Per-file information
‒ Information about what blocks store the data of that file
‒ The file’s owner and protection information
‒ Information such as the creation time and last modified time
‒ The name of the file?

• Global information
‒ Total size of the file system (number of blocks)
‒ Information necessary for finding per-file information for a given file
‒ The list of free blocks

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

data blocks

y

x+1

all other storage within the file system

Simple Example: Classical Unix Format
boot block0 contains code to boot the computer
superblock1 global information (or beginning of global information)

inodes
2

x
per-file information (short for “index node”)

File System Contents

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

Consequences of this Format
Advantages

• Can identify any block by its block number

• Block 0 is not really part of the file system, so
0 can be used in the file system as a special
value (e.g., like NULL)

• Can identify any inode by its inode number
‒ Example with 4096 blocksize, 256 inode size
‒ Exactly 16 inodes per block of inodes
‒ Easy to calculate where any inode is, given

its inode number

boot block0
superblock1

inodes
2

x

data blocks

y

x+1

File System Contents

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

Consequences of this Format
Disadvantages
• All inodes must be preallocated when the file

system is “formatted”
‒ Must decide in advance how many inodes
‒ Wastes space if too many are preallocated
‒ Or can’t make a new file if not enough

inodes are preallocated, even if free data
blocks are available

• The inode for a file can be a long seek away
from the data blocks of the file’s contents

• These disadvantages can all be fixed, but
don’t worry about them now

boot block0
superblock1

inodes
2

x

data blocks

y

x+1

File System Contents

19

20

