
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Representing Files in File Systems

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

In Addition to the Inode for Each File?
Need to keep track of which blocks store the data of a given file

• Want to be able to efficiently read/write the file contents sequentially

• Want to be able to efficiently read/write the file contents in “random” order

• Want to be able to have a large maximum file size

• Want to be able to represent small files efficiently

• Want to be able to represent very large files efficiently

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Contiguous Allocation
• All data in the file is stored in a single contiguous

collection of data blocks
• In the inode

‒ block number of first block of file’s contents
‒ the number of contiguous

blocks allocated for
file’s contents

• Usually, all blocks are
preallocated when the
file is created

. . .
71
3

. . .

inode

block 73

block 71

block 72

#include <stdio.h
> int main(int arg
c, char **argv) { i
nt i; for (i = 0; i <
100; i++) { printf(
“this is iteration n

umber %d\n”, i);
printf(“there are
%d more iteratio
ns to go in this lo
op\n”, 100 – i); p
rintf(“this is just a

ridiculous exampl
e of the data byte
s in a file\n”); } re
turn (0); } …

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Contiguous Allocation
Advantages
• Very easy to implement
• Efficient sequential access and random access

Problems
• Essentially the same problems as faced by malloc() for memory allocation,

but disk is much slower (e.g., best fit?)
• Bad external fragmentation problem
• Bad internal fragmentation problem (if preallocated space)
• Often can’t (or very inefficient to) grow the file

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Linked Allocation
• In inode: the block number of the first block of the contents of the file
• In each data block of the file

‒ block number of the next block of the contents of the file (e.g., 4 bytes)
‒ the rest of that block is filled with part of the contents of the file

. . .
71
. . .

inode block 71
203

block 203
19

block 19
375

block 375
0

#include <stdio.h
> int main(int arg
c, char **argv) { i
nt i; for (i = 0; i <
100; i++) { printf(

“this is iteration n
umber %d\n”, i);
printf(“there are
%d more iteratio
ns to go in this lo

op\n”, 100 – i); p
rintf(“this is just a
ridiculous exampl
e of the data byte
s in a file\n”); } re

turn (0); } …

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Linked Allocation
Advantages
• Files are easy to grow (except for finding last block to link new block onto)
• No external fragmentation, and internal fragmentation limited to < block size
• Fast sequential file access

Problems
• Inefficient and difficult random access
• Space taken out of each data block to store the next block number of the file

(and no longer a power of 2 amount of data in each data block)
• More disk seeking even on sequential file access since not contiguous

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Indexed Allocation
Many alternative variants on this basic idea

• Something abstractly similar to a page table
‒ Given the file-relative block number of data to access within that file,
‒ You can use that relative block number to go directly to the place in the

index that gives the file system block number storing that data
‒ The block index, of course, must be stored on the disk in the file system
‒ (This is where the Unix file system “inode” gets its name)

• But big questions
‒ Where on disk is the index for a given file stored?
‒ How big (how many entries) is the index, and how big can the index be?

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Indexed Allocation: Index in the Inode
The entire block index is in the inode
• An array listing all corresponding block numbers of the file’s contents

block 71
#include <stdio.h
> int main(int arg
c, char **argv) { i
nt i; for (i = 0; i <
100; i++) { printf(
“this is iteration n

block 404
umber %d\n”, i);
printf(“there are
%d more iteratio
ns to go in this lo
op\n”, 100 – i); p
rintf(“this is just a

block 44
ridiculous exampl
e of the data byte
s in a file\n”); } re
turn (0); } …

. . .

. . .

inode

. . .

71
404
44

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Indexed Allocation: Index in the Inode
Advantages
• Can always directly, immediately get the block number for any part of a file

Problems
• Small maximum file size, or
• Large inode size, or
• Variable inode size

‒ now hard to find an inode just given its inode number
‒ and inodes can now be split across a block boundary
‒ or increased internal fragmentation in allocation of space for inodes

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Indexed Allocation: Index in a Separate Block
The file’s index is in a single separate block outside the inode
• In inode: the block number of that index block

block 71
#include <stdio.h
> int main(int arg
c, char **argv) { i
nt i; for (i = 0; i <
100; i++) { printf(
“this is iteration n

block 404
umber %d\n”, i);
printf(“there are
%d more iteratio
ns to go in this lo
op\n”, 100 – i); p
rintf(“this is just a

block 44
ridiculous exampl
e of the data byte
s in a file\n”); } re
turn (0); } …

. . .

. . .

inode

57

block 57

. . .

71
404
44

(the index)

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Indexed Allocation: Index in a Separate Block
Advantages
• Only uses space for the index for inodes that are in use, not for all inodes
• Easy to implement and efficient to use

Problems
• Small maximum file size, with only a single block for the entire index
• Could make a file’s index multiple blocks instead of a single block

‒ Contiguous would be easy to implement and efficient to use, but very
hard to manage allocation of the contiguous index blocks

‒ Not contiguous requires some way to find the right block of the file’s
index when accessing some block of the file’s data contents

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Indexed Allocation: In a Variable List of Blocks
In each index block, give the block number of the next block of the index
• Like basic linked data allocation, but for the index, not for the data

inode

. . .

. . .

57

block 57
19
71

404
44
17

block 19
105
10

203
84

332

block 105
0

61
276
. . .

(index block) (index block) (index block)

(the actual file data blocks are not shown in this figure)

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Indexed Allocation: In a Variable List of Blocks
Advantages
• Still only uses space for the index for inodes that are in use, not for all inodes
• Allows an arbitrarily large maximum file size, since the index can grow

Problems
• Can’t go directly to the needed data block, since you have to find the correct

block of the index first
• Similar to linked allocation for the data blocks, you have to read each index

block just to get the block number of the next block of the index
• And those index blocks could be a long seek from one index block to the next

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

Indexed Allocation: A Multilevel Index
Similar to a tree-structured (hierarchical) page table:

inode

. . .

. . .

57

block 57
55

123
89
17

333

82
678
91
12

890

71
404
44
39

456
. . .

block 55

block 333

block 71 #include <stdio.h
> int main(int arg
c, char **argv) { i
nt i; for (i = 0; i <
100; i++) { printf(
“this is iteration n

block 404 umber %d\n”, i);
printf(“there are
%d more iteratio
ns to go in this lo
op\n”, 100 – i); p
rintf(“this is just a

block 44 ridiculous exampl
e of the data byte
s in a file\n”); } re
turn (0); } …

. . .

. . .

. . .

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

Indexed Allocation: A Multilevel Index
Similar to a tree-structured (hierarchical) page table

inode

. . .

. . .

. . .

#include <stdio.h
> int main(int arg
c, char **argv) { i
nt i; for (i = 0; i <
100; i++) { printf(
“this is iteration n

umber %d\n”, i);
printf(“there are
%d more iteratio
ns to go in this lo
op\n”, 100 – i); p
rintf(“this is just a

ridiculous exampl
e of the data byte
s in a file\n”); } re
turn (0); } …

. . .
. . .

. . .

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Indexed Allocation: A Multilevel Index
Advantages
• Allows an arbitrarily large maximum file size, since the index can grow
• And now you can get to the block number (and thus the data) for any part of

the file reasonably efficiently

Problems
• How many levels of index hierarchy do we need or want?

‒ Example: 4096 block size, 4-byte block numbers = 1024 numbers/block
‒ 1-level = max file size 1024 blocks, 2-level = 10242, 3-level = 10243, . . .
‒ Small number of levels: efficient for small files, but small max file size
‒ Large number of levels: wasted index space for small files, and must go

through all levels to access any part of the file

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

Indexed Allocation: The Unix Inode Scheme
Small index in inode (0-level), plus 1-level hierarchy, plus 2-level, plus 3-level
• Each level, and index blocks within that level, only allocated as needed

inode

. . .

10 direct block numbers, leading directly to 10 blocks of data

Example: 4096 block size, 4 bytes for each block number

1 single indirect block number, leading to 1024 blocks of data
1 double indirect block number, leading to 10242 blocks of data
1 triple indirect block number, leading to 10243 blocks of data

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

inode

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
Data

Data

Data

Data
. . .

Data

Data
. . . Data

Data
. . .

Data

Data
. . .

Data

Data
. . .

Data

Data
. . .

Data

Data
. . .

. . .
. . .

. . .

. . .

. . .
. . .

. . .

. . .

. . .

. . .

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

Indexed Allocation: The Unix Inode Scheme
Advantages
• Space and time efficient for accessing any part of a small file
• Space and time efficient for accessing any part of a large file, relative to other

ways of representing a large file
• Space and time efficient for accessing the beginning of a large file

Problems
• A little more complicated than a simple index, but still easily manageable

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

Separate Question: How Big is the File?
All unused block numbers in an inode and in index blocks “should” be 0

• But this is in general only a convention

• And the first 0 block number does not mark the end of the file

• And what if there are exactly 5000 bytes (not 8192) in the file?

• Instead, a field in the inode gives the file size in bytes
‒ The number of block numbers in use is obtained from math on that size
‒ All block numbers after that point should be ignored
‒ And all index blocks after that point should not exist
‒ (Returned as the st_size field in a “struct stat” from stat() and fstat())

19

20

