Representing Files in File Systems

COMP 321

Dave Johnson

COMP 321 Copyright © 2025 David B. Johnson Page 1

In Addition to the Inode for Each File?

Need to keep track of which blocks store the data of a given file

* Want to be able to efficiently read/write the file contents sequentially

* Want to be able to efficiently read/write the file contents in “random” order
* Want to be able to have a large maximum file size

* Want to be able to represent small files efficiently

* Want to be able to represent very large files efficiently

COMP 321 Copyright © 2025 David B. Johnson Page 2

Contiguous Allocation

block 71
* All data in the file is stored in a single contiguous
collection of data blocks
* In the inode
—block number of first block of file’s contents
—the number of contiguous block 72
blocks allocated for inode
file’s contents
* Usually, all blocks are o
preallocated when the 1
file is created 3 block 73

COMP 321 Copyright © 2025 David B. Johnson

#tinclude <stdio.h
> int main(int arg
¢, char **argv) {i
nti; for(i=0;i<

100; i++) { printf(
“this is iteration n

umber %d\n”, i);
printf(“there are
%d more iteratio
ns to go in this lo
op\n”, 100 -i); p
rintf(“this is just a

ridiculous exampl
e of the data byte
sin afile\n”); } re
turn (0); } ...

Page 3

Contiguous Allocation

Advantages
* Very easy to implement
* Efficient sequential access and random access

Problems

* Essentially the same problems as faced by malloc() for memory allocation,

but disk is much slower (e.g., best fit?)
* Bad external fragmentation problem
* Bad internal fragmentation problem (if preallocated space)
* Often can’t (or very inefficient to) grow the file

COMP 321 Copyright © 2025 David B. Johnson

Page 4

Linked Allocation

* In inode: the block number of the first block of the contents of the file
* In each data block of the file

— block number of the next block of the contents of the file (e.g., 4 bytes)
—the rest of that block is filled with part of the contents of the file

inode block 71 block 203 block 19 block 375
203 19 375 0

e #tinclude <stdio.h “this is iteration n op\n”, 100-i); p turn (0); } ...
> int main(int arg umber %d\n”, i); rintf(“this is just a

71
¢, char **argv) {i printf(“there are ridiculous exampl
nti; for(i=0;i< %d more iteratio e of the data byte
100; i++) { printf(ns to go in this lo sin afile\n”); }re

COMP 321 Copyright © 2025 David B. Johnson Page 5

Linked Allocation

Advantages

* Files are easy to grow (except for finding last block to link new block onto)

* No external fragmentation, and internal fragmentation limited to < block size
* Fast sequential file access

Problems
¢ |Inefficient and difficult random access

* Space taken out of each data block to store the next block number of the file
(and no longer a power of 2 amount of data in each data block)

* More disk seeking even on sequential file access since not contiguous

COMP 321 Copyright © 2025 David B. Johnson Page 6

Indexed Allocation

Many alternative variants on this basic idea

* Something abstractly similar to a page table
— Given the file-relative block number of data to access within that file,

—You can use that relative block number to go directly to the place in the
index that gives the file system block number storing that data

—The block index, of course, must be stored on the disk in the file system
— (This is where the Unix file system “inode” gets its name)

* But big questions
—Where on disk is the index for a given file stored?
— How big (how many entries) is the index, and how big can the index be?

COMP 321 Copyright © 2025 David B. Johnson Page 7

Indexed Allocation: Index in the Inode

The entire block index is in the inode
* An array listing all corresponding block numbers of the file’s contents

inode
=1 block 71 block 404 block 44
404 #include <stdio.h umber %d\n”, i); ridiculous exampl
> int main(int arg printf(“there are e of the data byte
44 ¢, char **argv) {i %d more iteratio sin afile\n”); } re

nti; for(i=0;i<
100; i++) { printf(
“this is iteration n

ns to go in this lo
op\n”, 100 -i); p
rintf(“this is just a

turn (0); } ...

COMP 321

Copyright © 2025 David B. Johnson

Page 8

Indexed Allocation: Index in the Inode

Advantages
* Can always directly, immediately get the block number for any part of a file

Problems
* Small maximum file size, or
* Large inode size, or

* Variable inode size
—now hard to find an inode just given its inode number
—and inodes can now be split across a block boundary
—or increased internal fragmentation in allocation of space for inodes

COMP 321 Copyright © 2025 David B. Johnson Page 9

Indexed Allocation: Index in a Separate Block

The file’s index is in a single separate block outside the inode
* In inode: the block number of that index block

inode
(the index)
block 57 block 71 block 404 block 44
71 #include <stdio.h umber %d\n”, i); ridiculous exampl
404 > int main(int arg printf(“there are e of the data byte
57 c, char **argv) {i %d more iteratio sin afile\n”); } re
44 nti; for(i=0;i< ns to go in this lo turn (0); } ...

100; i++) { printf(
“this is iteration n

op\n”, 100 -i); p
rintf(“this is just a

COMP 321

Copyright © 2025 David B. Johnson

Page 10

10

Indexed Allocation: Index in a Separate Block

Advantages
* Only uses space for the index for inodes that are in use, not for all inodes

* Easy to implement and efficient to use

Problems
* Small maximum file size, with only a single block for the entire index

* Could make a file’s index multiple blocks instead of a single block

— Contiguous would be easy to implement and efficient to use, but very
hard to manage allocation of the contiguous index blocks

—Not contiguous requires some way to find the right block of the file’s
index when accessing some block of the file’s data contents

COMP 321 Copyright © 2025 David B. Johnson Page 11

11

Indexed Allocation: In a Variable List of Blocks

In each index block, give the block number of the next block of the index
* Like basic linked data allocation, but for the index, not for the data

inode
(index block) (index block) (index block)
block 57 block 19 block 105

19 105 0

57 71 10 61
404 203 276
a4 84
17 332

(the actual file data blocks are not shown in this figure)

COMP 321

Copyright © 2025 David B. Johnson

Page 12

12

Indexed Allocation: In a Variable List of Blocks

Advantages
* Still only uses space for the index for inodes that are in use, not for all inodes
* Allows an arbitrarily large maximum file size, since the index can grow

Problems

* Can’t go directly to the needed data block, since you have to find the correct
block of the index first

* Similar to linked allocation for the data blocks, you have to read each index
block just to get the block number of the next block of the index

* And those index blocks could be a long seek from one index block to the next

COMP 321 Copyright © 2025 David B. Johnson Page 13

13

block 71 | #include <stdio.h
Indexed Allocation: A Multilevel Index |>nmanint=re
nti;for(i=0;i<
Similar to a tree-structured (hierarchical) page table: 100; i++) { printf(
“this is iteration n
block 55 71 .
inode block 404 | umber %d\n”, i);
404 printf(“there are
44 %d more iteratio
block 57 ns to go in this lo
55 39 op\n”, 100-i); p
456 rintf(“this is just a
123 : .
57 89 block 44 | ridiculous exampl
17 82 e of the data byte
333 678 sin afile\n”); }re
91 . turn (0); } ...
12
block 333 890
COMP 321 Copyright © 2025 David B. Johnson Page 14

14

#include <stdio.h
Indexed Allocation: A Multilevel Inde 7t man(ne g
nti;for(i=0;i<

Similar to a tree-structured (hierarchical) page ta 100; i++) { printf(
“this is iteration n

inode I umber %d\n”, i);

= printf(“there are
%d more iteratio
ns to go in this lo

e op\n”, 100 —i); p
/ . \ rintf(“this is just a
/ ridiculous exampl

e of the data byte
sin afile\n”); } re
turn (0); } ...

\

COMP 321 Copyright © 2025 David B. Johnson Page 15

15

Indexed Allocation: A Multilevel Index

Advantages
* Allows an arbitrarily large maximum file size, since the index can grow

* And now you can get to the block number (and thus the data) for any part of
the file reasonably efficiently

Problems

* How many levels of index hierarchy do we need or want?
— Example: 4096 block size, 4-byte block numbers = 1024 numbers/block
— 1-level = max file size 1024 blocks, 2-level = 10242, 3-level = 10243,
—Small number of levels: efficient for small files, but small max file size
— Large number of levels: wasted index space for small files, and must go
through all levels to access any part of the file

COMP 321 Copyright © 2025 David B. Johnson Page 16

16

Indexed Allocation: The Unix Inode Scheme

Small index in inode (0-level), plus 1-level hierarchy, plus 2-level, plus 3-level

* Each level, and index blocks within that level, only allocated as needed

inode

COMP 321

Example: 4096 block size, 4 bytes for each block number

10 direct block numbers, leading directly to 10 blocks of data

1 single indirect block number, leading to 1024 blocks of data
1 double indirect block number, leading to 10242 blocks of data
1 triple indirect block number, leading to 10243 blocks of data

Copyright © 2025 David B. Johnson

Page 17

17

Data

Data

Data

JU UL

Data

Data

; 7 / 7 / - /vl Data

7 e

;///// . / I?a-t a.
7 / yavi Data
.o 77 /

VA

7

Data

Data

COMP 321

Data

IR N

Data

Copyright © 2025 David B. Johnson

Page 18

18

Indexed Allocation: The Unix Inode Scheme

Advantages
* Space and time efficient for accessing any part of a small file

* Space and time efficient for accessing any part of a large file, relative to other
ways of representing a large file

* Space and time efficient for accessing the beginning of a large file

Problems
* A little more complicated than a simple index, but still easily manageable

COMP 321 Copyright © 2025 David B. Johnson Page 19

19

Separate Question: How Big is the File?

All unused block numbers in an inode and in index blocks “should” be 0
* But this is in general only a convention

* And the first 0 block number does not mark the end of the file

* And what if there are exactly 5000 bytes (not 8192) in the file?

* Instead, a field in the inode gives the file size in bytes
—The number of block numbers in use is obtained from math on that size
— All block numbers after that point should be ignored
—And all index blocks after that point should not exist
— (Returned as the st_size field in a “struct stat” from stat() and fstat())

COMP 321 Copyright © 2025 David B. Johnson Page 20

20

10

