
1

Copyright © 2025  David B. JohnsonCOMP 321 Page 1

Persistence and Consistency
in File Systems

COMP 321

Dave Johnson

Copyright © 2025  David B. JohnsonCOMP 321 Page 2

Appearances vs. Performance Reality
Kernel reading and writing files appears to be synchronous and unbuffered
• Immediately after return from a read( ) call, the data are available
• Immediately after a write( ) call, the process may freely reuse the user buffer

But, really, the kernel buffers file data in a cache inside the kernel
• Data written on a write( ) is immediately copied into the cache but may be 

delayed in writing to the disk
‒ e.g., combine multiple changes to the same block into a single disk write

• A read() causes the file block to be read into the cache
‒ e.g., multiple future read( ) or write( ) can just access the cached block

• Greatly improves performance by reducing disk I/O (and its delays)

1

2



2

Copyright © 2025  David B. JohnsonCOMP 321 Page 3

A Simple Example
Consider the following simple program
• Without caching in the kernel,

this program does
‒ 40,960 disk writes
‒ 40,950 disk reads to get the 

block to add the next char to
‒ Elapsed time 5.84 seconds!

• With caching in the kernel,
this program does

‒ 10 disk writes
‒ 0 disk reads
‒ Elapsed time 0.04 seconds!

int main(void)
{

int fd;
int i;
char ch = 'X';

fd = creat("data.txt", 0666);
for (i = 0; i < 10 * 4096; i++)

write(fd, &ch, 1);
exit(0);

}

Copyright © 2025  David B. JohnsonCOMP 321 Page 4

A Few Questions
• When is data from a write() actually persistent on the disk?

• What can we rely on for ordering of different writes to disk?

• Does a read() always return the actual up-to-date data that is on disk?

• What about changes to a file’s inode (e.g., recording the block numbers of 
newly added file blocks)?

• What about for file systems accessed over a network rather than local?

3

4



3

Copyright © 2025  David B. JohnsonCOMP 321 Page 5

The File System Block Cache
A performance optimization to reduce disk reads and writes

• When a block is read from the disk
‒ It is read it into some block buffer in the block cache
‒ A copy of the block is kept in the cache for future use

• When the contents of a file system block is modified
‒ Modify the copy of the block in the block cache
‒ Just mark that block in the block cache as “dirty”

• When a block is evicted from the block cache (due to space)
‒ If it is marked as “dirty”, it is written to disk before reusing cache buffer

Copyright © 2025  David B. JohnsonCOMP 321 Page 6

An Example Block Cache Structure

. .
 .

ha
sh

 v
al

ue
as

 in
de

x

. . . A hash table
• hashing on block number
• Doubly-linked circular 

collision chains
• All blocks in physical mem
• A fixed number of blocks

block #
status
data

block #
status
data

block #
status
data

block #
status
data

block #
status
data

block #
status
data

5

6



4

Copyright © 2025  David B. JohnsonCOMP 321 Page 7

The sync() Kernel Call

Causes all dirty file system data to be queued for writting to the disk
• Returns immediately after queuing all necessary disk writes
• Does not wait for completion of the writes
• Any user process can call sync( ) anytime it wants to

Classically a system process calls sync() periodically
• Example: “update” program on classical Unix calls sync( ) every 30 seconds

Helps some, but can’t provide any persistence or consistency guarantees

void sync(void); 

Copyright © 2025  David B. JohnsonCOMP 321 Page 8

The fsync() Kernel Call

Causes all dirty file system data for open file fd to be written to the disk
• Does not return until all writes have completed
• Includes all data for the file as well as “metadata” (e.g., inode) for it
• If the file system hard drive has internal caching (very common for hard disks)

‒ Forces the data to be written through that caching too
‒ Does not return until the data is really on the disk drive

• Useful to ensure the data and metadata for the file on disk is up-to-date
‒ In case of a crash (e.g., power failure)

int fsync(int fd); 

7

8



5

Copyright © 2025  David B. JohnsonCOMP 321 Page 9

Ensuring File Contents and Metadata Is Up-to-Date
Consider the following simple program
• The fsync(fd) call ensures

‒ All 10 blocks of data are on disk
‒ The inode records., e.g., those 10

block numbers and records the
file size of 40960

• But what about the name “data.txt”?
‒ The directory is in data blocks

separate from file data and
separate from file inode

‒ fsync(fd) does not ensure the
name “data.txt” got recorded

int main(void)
{

int fd;
int i;
char ch = 'X';

fd = creat("data.txt", 0666);
for (i = 0; i < 10 * 4096; i++)

write(fd, &ch, 1);
fsync(fd);
exit(0);

}

Copyright © 2025  David B. JohnsonCOMP 321 Page 10

Ensuring the Directory is Also Up-to-Date
Consider the following simple program
• To ensure name “data.txt” is also

up-to-date in the directory
‒ Use fsync() on fd open to the directory

• Can’t open for O_RDWR to get fd2
since that would then let us directly
modify the directory

• fd2 just identifies the object we are
doing fsync( ) on

‒ The changes to add name “data.txt”
have already taken place

‒ fsync(fd2) forces those all of those
changes to the directory to disk

int main(void)
{

int fd;
int i;
char ch = 'X';

fd = creat("data.txt", 0666);
int fd2 = open(".", O_RDONLY);
fsync(fd2);
for (i = 0; i < 10 * 4096; i++)

write(fd, &ch, 1);
fsync(fd);
exit(0);

}

9

10



6

Copyright © 2025  David B. JohnsonCOMP 321 Page 11

Map (part of) a file (or something else) into your virtual address space
• “fd” must be open to the file (or whatever) you want to map in from
• “addr” and “offset” must be multiple of PAGESIZE, but “length” need not be
• All pages covered by any part of [addr, addr+length) are mapped

‒ if addr == NULL, the kernel chooses the virtual address
• “prot” should be PROT_NONE (no access) or the logical “or” of

‒ PROT_READ – allow read (e.g., LOAD) accesses from the page
‒ PROT_WRITE – allow write (e.g., STORE) accesses to the page
‒ PROT_EXEC – allow CPU execution of instructions from the page

• mmap() returns the virtual address at which the memory was mapped

Review: The mmap() Kernel Call

void  *mmap(void  addr[.length],  size_t length,  int  prot,  int  flags,  
int  fd,  off_t offset);

Copyright © 2025  David B. JohnsonCOMP 321 Page 12

The “flags” argument can specify many different things as the “or” of
• The sharing of the mapping with other processes, as either of

‒ MAP_SHARED – Modifications to the memory are visible to other 
processes mapping this file and are eventually reflected in the file

‒ MAP_PRIVATE – Modifications to the memory are not visible to other 
processes mapping to this file, and the file contents is not changed

• What to map to (the default is to map to a file)
‒ MAP_ANONYMOUS (or MAP_ANON) – instead of a file, map to newly 

created “anonymous” memory (i.e., map to “nothing”)
• Restrictions on the virtual address to map to

‒ MAP_FIXED – “addr” is normally treated as a “hint” by the kernel, but 
instead, the mapping must be exactly at virtual address addr

Review: The mmap() Kernel Call

11

12



7

Copyright © 2025  David B. JohnsonCOMP 321 Page 13

Synchronize the file with the memory mapping
• Make sure the disk copy is up-to-date with changes in memory copy
• “addr” must be a multiple of PAGESIZE, but “length” need not be
• All pages covered in any part by [addr, addr+length) are updated
• “flags” should be either

‒ MS_ASYNC – asynchronous update, returns immediately
‒ MS_SYNC – synchronous update, does no return until updated on disk

• Happens implicitly when munmap() is used on these pages
‒ And thus happens implicitly on _exit()

Review: The msync() Kernel Call

int  msync(void  addr[.length],  size_t length,  int  flags);  

Copyright © 2025  David B. JohnsonCOMP 321 Page 14

Behavior of mmap() and MAP_SHARED
• All processes mapping the same area of some file MAP_SHARED immediately 

see each other’s changes
‒ They are actually mapped to the same physical pages, so there is no way 

they couldn’t immediately see each other’s changes
• msync() has some similarity to sync( ) and to fsync( )

‒ With MS_ASYNC, it is more like sync( ) in just queueing the writes to disk
‒ With MS_SYNC, it is more like fsync( ) in waiting for writes to complete
‒ Both MS_ASYNC and MS_SYNC just apply to the given addr and length 

range of bytes of the file
‒ Neither applies to the file’s metadata (e.g., inode updates)

13

14



8

Copyright © 2025  David B. JohnsonCOMP 321 Page 15

mmap() MAP_SHARED is Widely Misunderstood
Example – ChatGPT got it wrong!

When asked

• Can you write some simple C programs that allows you to see that
data is not written to a file if you don't use msync after writing to an
mmaped file?

ChatGPT suggested the following two (simplified) programs to show this

• And provided an explanation of the two programs

Copyright © 2025  David B. JohnsonCOMP 321 Page 16

Programs Provided by ChatGPT
int fd;
char *mapped;

fd = creat("test_file.txt", 0666);
mapped = mmap(NULL, FILE_SIZE,

PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

strcpy(mapped, "Hello world!\n");
printf("Data written: %s\n", mapped);

// no msync() or any other flushing:
sleep(10); // Run Program 2

munmap(mapped, FILE_SIZE);
close(fd);

int fd;
char *mapped;

fd = open("test_file.txt", O_RDONLY);
mapped = mmap(NULL, FILE_SIZE,

PROT_READ, MAP_SHARED, fd, 0);

// will likely print nothing or garbage:
printf("Data read: %s\n", mapped);

munmap(mapped, FILE_SIZE);
close(fd);

15

16



9

Copyright © 2025  David B. JohnsonCOMP 321 Page 17

ChatGPT’s (Incorrect!) Explanation
Step 1

Run Program 1 to write data to the memory-mapped file (test_file.txt).  
Since msync( ) isn't called, the data is written to the memory-mapped 
region but not flushed to the file on disk.

Step 2

Run Program 2, which attempts to read from the file. Since Program 1 
didn't flush the data with msync( ), Program 2 will not see the changes that 
Program 1 made. The output will likely show empty or outdated data from 
the file (e.g., empty string or garbage data).

This is incorrect – Program 2 will always see all of Program 1’s changes!

Copyright © 2025  David B. JohnsonCOMP 321 Page 18

Doing read() and write() vs. mmap() Changes
• Doing read( ) and/or write( ) uses the file system block cache

‒ Data moves between the file and the block cache
‒ Other processes also doing read() and/or write() on the same file see each 

other’s changes since they are sharing entries in the block cache
• Doing mmap( ) uses physical pages outside of the block cache

‒ These physical pages are mapped into the process’s virtual address space
‒ File blocks only brought into memory when accessed (demand paging)

• Processes doing read( )/write( ) vs. processes doing mmap( ) don’t see each 
other’s changes!  (Except as they get evicted/reloaded due to lack of space)

• And can easily end up with two copies of the same data in physical memory!

17

18



10

Copyright © 2025  David B. JohnsonCOMP 321 Page 19

Unified Block Cache and Virtual Memory
Fully integrate the block cache management and virtual memory
• Each page of physical memory holding a page of MAP_SHARED data (or, e.g., 

a shared text page) is effectively the same as a block in the block cache
• Block cache and virtual memory share essentially all of physical memory
• Allows better dynamic allocation of how physical memory pages are used

• Now only one copy of any file block anywhere in physical memory
• And processes doing read( )/write( ) and/or mmap( ) accesses immediately 

see each other’s changes

Copyright © 2025  David B. JohnsonCOMP 321 Page 20

Unified Block Cache and Virtual Memory

Without Unified Cache With Unified Cache
UBC: An Efficient Unified I/O and Memory Caching Subsystem for NetBSD, Chuck Silvers, USENIX 2000

19

20



11

Copyright © 2025  David B. JohnsonCOMP 321 Page 21

File System Access over a Network
Adds additional layers of buffering and latency
• Example: CLEAR home directory access over NFS (Network File System)
• Local kernel writes data over the network rather than to local disk
• Remote server machine receives data from network and writes to local disk
• Both machines have buffering at the network level
• Data or metadata changes may take longer to end up on disk

• fsync( ) is defined to write all the way to the remote disk before returning
• Also when the last local file descriptor to it is closed
• Otherwise, data and metadata changes should eventually get to the disk,

but it can be a “long” time

21


