Naming in File Systems

COMP 321

Dave Johnson

COMP 321 Copyright © 2025 David B. Johnson Page 1

What is Naming in File Systems?

A “directory” maps file names to files

Two alternatives for storing file names

* The file name is in each inode

file size block numbers . .. e file name

* The file name is separate from and linked to the inode

file size block numbers . .. e inode # file name

This second approach easily allows multiple names for the same file

COMP 321 Copyright © 2025 David B. Johnson Page 2

Other Naming Implementation Choices

How is the space for a directory allocated and managed?
* Could be a preallocated contiguous chunk of disk blocks

* Or could be managed the same as the space for any other file
— A regular file contains bytes of data
—In the same way, a directory file contains bytes of the directory entries

What is the maximum length of a file name?

* A fixed maximum length
— Example: Classical Unix format used fixed 14-character area for the name

* Or avariable length
— Makes managing the space allocation for the names more difficult

COMP 321 Copyright © 2025 David B. Johnson Page 3

Other Naming Implementation Choices

What is the format of a file name?

* Fixed format

— Example original MS-DOS file system: Maximum of 8 characters ".
maximum of 3 characters, and for letters, only uppercase allowed

* Arbitrary string of any (or almost any) characters
— Example Unix: Literally any character otherthan '\0"'and '/"'

What is the structure and organization of a directory?
* An unsorted list of entries, or a sorted list

* A hash table (on disk, of course)

* Something else?

COMP 321 Copyright © 2025 David B. Johnson Page 4

Example: MS-DOS Directory Entry (Like An Inode)

struct direntry

{
char name[8]; /* file name, before the "." */
char extension[3]; /* file name extension, after the "." */
char attributes; /* protection and other attributes */
char unused[10]; /* unused bytes in directory entry */
char time[2]; /* last modified time */
char date[2]; /* last modified date */
unsigned short first; /* first block number of file’s data */
unsigned int size; /* file’s size in bytes*/

2

COMP 321 Copyright © 2025 David B. Johnson

Page 5

Example: Classical Unix Directory Entry

t#tdefine DIRSIZ 14

struct direct

{
ino_t d_ino; /* inode number of the file itself */
char d_name[DIRSIZ]; /* this name for the file */

2

Note that the name is not null-terminated (' \0') in d_name

* The name ends at the first null byte ' \0’ ind_name

* Or after DIRSIZ number of characters

* Whichever occurs first (a 14-character name hasno '\0’)

* In MS-DOS, the name and extension are also not null-terminated

COMP 321 Copyright © 2025 David B. Johnson

Page 6

Example: Classical Unix Inode

struct dinode

{
unsigned short di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
short di_uid; /* owner's user id */
short di_gid; /* owner's group id */
off t di_size; /* number of bytes in file */
char di_addr[40]; /* disk block addresses */
time_t di_atime; /* time last accessed */
time_t di_mtime; /* time last modified */
time_t di_ctime; /* time created */

2

di_addr bytes: 39 bytes used; 13 addresses, 3 bytes each

COMP 321 Copyright © 2025 David B. Johnson Page 7

Adding Subdirectories: A Tree-Structured Directory

There needs to be a designated “root” directory

* Could be a preallocated contiguous chunk of disk blocks
— But how do you know where that preallocated chunk of disk blocks is?

* Or could be managed the same as any other file

— But how do you find that file, since it’'s name must be interpreted relative
to the root directory?

We need to be able to link subdirectories together in a tree

* This part is easy: Just need to be able to mark the “type” of a file as either a
“regular” type file or a directory type file

COMP 321 Copyright © 2025 David B. Johnson Page 8

Example: MS-DOS Root Directory

A preallocated contiguous chunk of disk blocks
* The boot block contains code to boot the kernel

* |t also describes the size of the FAT and the
number (1 or 2) of FATs

* |t also describes the size of the root directory
* The root directory immediate follows the last FAT

* The root directory must then be a single
contiguous chunk of disk space

COMP 321 Copyright © 2025 David B. Johnson

Boot Block

FAT

Duplicate FAT

Root Directory

Page 9

Example: MS-DOS Linking Subdirectories Together

struct direntry

{
char name[8]; /* file name, before the "." */
char extension[3]; /* file name extension, after the "." */
char attributes; /* protection and other attributes */
char unused[10]; /* unused bytes in directory entry */
char time[2]; /* last modified time */
char date[2]; /* last modified date */
unsigned short first; /* first block number of file’s data */
unsigned int size; /* file’s size in bytes*/

2

Attribute bit 0x10 means file is a directory (its data is subdirectory entries)

COMP 321 Copyright © 2025 David B. Johnson

Page 10

10

Example: Unix Root Directory

Managed the same as any other file

* That file is always described by inode number 2

* A fixed, constant, well-known inode number

* The directory entries are then stored in the same

way as the data for any other file
—In the data blocks “hanging off of” inode 2

* Why inode number 2?

—Inode number 0 is not used, so that a 0 in an
inode number field can be a special value

— Historically, inode number 1 was used for a
“file” containing the bad blocks on the disk

COMP 321 Copyright © 2025 David B. Johnson

boot block

superblock

data blocks

Page 11

11

Example: Unix Linking Subdirectories Together

struct dinode

{
unsigned short di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
short di_uid; /* owner's user id */
short di_gid; /* owner's group id */
off t di_size; /* number of bytes in file */
char di_addr[40]; /* disk block addresses */
time_t di_atime; /* time last accessed */
time_t di_mtime; /* time last modified */
time_t di_ctime; /* time created */

2

Mode bit 040000 means file is a directory (its data is subdirectory entries)

COMP 321 Copyright © 2025 David B. Johnson

Page 12

12

An Example Unix Directory Tree

inode #2 |type= DIR ¢ |

_

Cl; bin 1'9 main.c 99 usr |
inode #73 | type =DIR ¢ | inodg;Jl9|type= REG o | inode #99 | type=DIR ¢ |
(\/ _J
|1? Is 5‘7|sh | %src |

inode #12 [type=REG ® | inode #57 |type=REG ® | inode #80 | type =DIR ¢ |
—
)

COMP 321 Copyright © 2025 David B. Johnson Page 13

main.c 61 | test.c ce |

13

An Example Unix Directory Tree

Legend:

O = DIR inode Q = REGULAR inode @

COMP 321 Copyright © 2025 David B. Johnson Page 14

14

Shorthand for Pathnames

Each process has a current directory

* The inode number of a process’s current directory is remembered in PCB

* Set to “home” directory at login (by the “login” command before exec shell)
* Changed by chdir() file system operation (called by “cd” command)

* Looking up a pathname:
—If pathname[0] == */’, this is an absolute pathname
o Start lookup at inode number 2 and the directory entries hanging off it
— Otherwise, this is a relative pathname
o Start lookup at inode number remembered in process’s PCB and the
directory entries hanging off it it

* Saves typing, but also improves efficiency since fewer steps in a relative lookup

COMP 321 Copyright © 2025 David B. Johnson Page 15

15

Shorthand for Pathnames

The “” and “..” names
* Doing things like “. /myprogram” or “cd ../otherdir” are not special cases

* The first two entries in every directory have the names “” and “.”

awn

—Inode number in “” entry is the directory’s own inode number

o-n

—Inode numberin “.” entry is the directory’s parent’s inode number

o n

—In the root directory (inode 2), the inode number for “..” entry is also 2

* The “” and “.” entries are always created as part of creating the directory
itself and cannot be removed

—The “” and “..” entries are really there, on disk, in every directory

COMP 321 Copyright © 2025 David B. Johnson Page 16

16

Mounting File Systems

What if you have more than one hard disk?
* Examples: 2 separate hard disks, removable flash memory sticks
* Impossible to manage inode numbers to be unique between all of these!

* Instead, use the same ranges of inode numbers on each, starting at
inode number 2 as the root of each

* The first file system is mounted automatically at boot as the root file system

/NINAA

Disk 1 Disk 2 Flash stick 1 Flash stick 2

COMP 321 Copyright © 2025 David B. Johnson Page 17

17

Mounting File Systems

Combine separate file systems into what appears as a single file system tree

* mount(file_system_device_name,
existing_directory_name, options)

* Adds an entry to the file system
mount table in the kernel

—Such that a reference to the inode
number of that existing directory name

— ... will be turned into a reference to
inode 2 on that mounted device

For current directory, remember the mounted
device id as well as the inode number in PCB

Flash stick 2

COMP 321 Copyright © 2025 David B. Johnson Page 18

18

Background: Device IDs

A device id is of the form (major device id, minor device id)

* Major device id indicates the type of the device
— Indicates which device driver to use for operations on that device
— An index into an array of structs

— Each struct contains pointers to the function for each kind of operation
for that type of device

* Minor device id indicates which device of that (major) device type
—Generally serves as an index into an array of structs
— Each struct contains the variables for that instance of this type of device
* The (major, minor) combination is unique among all devices
—So device id and inode number is unique among all inodes

COMP 321 Copyright © 2025 David B. Johnson Page 19

19

Creating a “Link” to an Existing File

Creates a new directory entry with the existing file’s inode number in it:

* link(oldname, newname) Example: link(“abc”, “def”)

inode #42 |filesize block numbers . ..

42 abc 42 def

Existing directory entry New directory entry

* Inode nlink field keeps a count of these links to that same inode
—nlink = count of directory entries with that inode number in them

awn

—nlink incudes the “”” and “.” directory entries
(but I will ignore those for clarity in the following slides here)

COMP 321 Copyright © 2025 David B. Johnson Page 20

20

10

The Corresponding “Unlink” Operation to Remove

Removes a name for the file, and may remove the inode and data blocks
* unlink(oldname) Example: unlink(“dirl/dir2/dir3/abc”)

* Always removes the directory entry for oldname
— Example: Removes the “abc” entry in directory “dirl/dir2/dir3”
* And if then no other way to reach that inode, frees the inode and the data blocks
— Inode nlink field is incremented on Link(oldname, newname)
— Inode nlink field is decremented on Unlink(oldname)
— If then the inode nlink field == 0, then also free that inode and the data blocks

COMP 321 Copyright © 2025 David B. Johnson Page 21

21

What Does it Mean to “Remove” a Directory Entry?

The literal interpretation (inefficient and unnecessary):

* Actually remove that directory entry

— Copy every byte of the directory after this one entry “up” by the size of the
directory entry being removed

— Or copy the last entry in the directory on top of the one being removed
* Change the “size” field in the directory’s inode to reflect the removed bytes

The better interpretation (sufficient, much more efficient, and commonly used):

* Just change the inode number in that directory entry to O (that’s all!)

* When reading through a directory, ignore (skip over) entries with inode number==0
* Do not change the “size” field in the directory’s inode since those bytes are still there

COMP 321 Copyright © 2025 David B. Johnson Page 22

22

11

Problems with Links to a Directory

* What should “..” for “/c” be? Is it the “/” inode or the “/a/b” inode?
* Recursive traversal like “Is -R /” could now visit a same subtree more than once

* And a link to a directory could create a loop in the file system directory “tree”

COMP 321 Copyright © 2025 David B. Johnson Page 23
23
Problems with Links to a Directory
Big problem with creating such a loop in the file system directory “tree”
* The inode for “/a” nlink value is initially 1
* Creating a new link “d” to this directory nI!nk =1
increases nlink from 1 to 2 e
Alrk=31
* Then, unlink of “a” changes this nlink value
from 2 back down to 1 %
- Since nlink did not go to 0, that inode b
and its data blocks are not freed!
— But this entire subtree containing c
5 inodes and many data blocks is now d
inaccessible and lost!
COMP 321 Copyright © 2025 David B. Johnson Page 24
24

12

Problems with Links to a Directory

There is no practical way to check if a new directory link creates a loop
* Would require, e.g., traversing the tree to see if you can

come back to the same inode nlink =1
* But the tree lives on the disk, so would be very, very slow! “.Ill."lli _ ZI
No practical way to check if unlink detaches subtree 5
* Would require, e.g., traversing the tree to see b

if you can still reach all inodes in use
* But the tree lives on the disk, so very, very slow! c g

Standard solution: Prohibit new links to directories

COMP 321 Copyright © 2025 David B. Johnson Page 25

25
Symbolic Links
An alternative way of representing a link in the file system:
* Regular links are often called “hard links” to distinguish from symbolic links
* Problems with hard links:
—Hard links to directories are prohibited due to loop problems
— Cannot represent a hard link to a file on a different mounted file system
o The hard link target is just represented as the inode number
o And inode numbers on each mounted file system are the same!
— Once created, no way to tell which name is the original name or the
“primary” name for the file
o All links, even the original name, all look identical
* Symbolic links do not have these problems
COMP 321 Copyright © 2025 David B. Johnson Page 26
26

13

Creating a Symbolic Link

Creates a new directory entry pointing to a new inode:
* symlink(oldname, newname) Example: symlink(“/xyz/abc”, “def”)

* Allocates a new inode of type = SYMLINK
* Creates a new directory entry “def” with this new inode number in it

* Data block for new inode contains the character string name of the link
target “/xyz/abc”, just as if it was a regular file containing those characters

* New inode’s nlink value is initialized, as usual, to 1
* Old existing inode’s nlink value is not changed

And the oldname does not even need to exist — it is just a character string

COMP 321 Copyright © 2025 David B. Johnson Page 27

27
Comparing Hard Links vs. Symbolic Links
link(“abc”, “def”) symlink(“abc”, “def”)
22 |abc 42 |abc
(1 inode # 42
inode # 42 nlink =1
nlink =2
L 81 def
42 |def f inode # 81
. nlink =1 .
abc «—
COMP 321 Copyright © 2025 David B. Johnson Page 28
28

14

Using a Symbolic Link — for Example, on open()

* Look up the pathname as normal

* If you encounter a symbolic link inode, recurse to look up that target name

* Recursive call returns found inode and device id, so resume the original
lookup there

—Just like the original lookup started at (root device id, 2) or at
(current directory device id, current directory inode number)

* Example: “/abc/def/ghi”, but “def” directory entry points to a symbolic link
inode with data “/123/456”, so recursively lookup of “/123/456"
—When that recursive call returns, resume original lookup there
— Means look up “ghi” starting at that (device id, inode number)

COMP 321 Copyright © 2025 David B. Johnson Page 29

29

Relative Pathnames as a Symbolic Link Target

* Cannot meaningfully treat this as relative to a process’s current directory

—The current directory may be different for the process that created the
symbolic link and any process that uses the symbolic link

—Would result in a different meaning for the symbolic link, which doesn’t
make much sense

* Instead, the relative symbolic link target is treated as relative to the directory
in which it was found

* Example: “/abc/def/ghi”, but “def” directory entry points to a symbolic link to
relative pathname “123/456”
— Recursive look up “123/456” starting at directory where “def” was found

— Meaning start at the same device id and inode you were already at

COMP 321 Copyright © 2025 David B. Johnson Page 30

30

15

What About Loops from Creating Symbolic Links?

Seemingly the same problem as for hard links, but actually not a problem

* When looking up a pathname, you can tell you are traversing a symbolic link
rather than a hard link

* Simply place a finite limit on the number of symbolic link traversals in a single
overall pathname lookup
— Example: Linux limit is 20, FreeBSD Unix limit is 32
—If limit is exceeded, terminate the lookup and return an error
(ELOOP = “Too many levels of symbolic links”)

* Such a solution for hard links would limit the maximum height of the entire
file system tree, but it does not when applied only to symbolic links traversed

* And you can also decide whether or not to follow symbolic links on, e.g., Is -R

COMP 321 Copyright © 2025 David B. Johnson Page 31

31

16

