
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Naming in File Systems

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

What is Naming in File Systems?
A “directory” maps file names to files

Two alternatives for storing file names

• The file name is in each inode

• The file name is separate from and linked to the inode

file namefile size block numbers

file size block numbers file nameinode #

This second approach easily allows multiple names for the same file

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Other Naming Implementation Choices
How is the space for a directory allocated and managed?
• Could be a preallocated contiguous chunk of disk blocks
• Or could be managed the same as the space for any other file

‒ A regular file contains bytes of data
‒ In the same way, a directory file contains bytes of the directory entries

What is the maximum length of a file name?
• A fixed maximum length

‒ Example: Classical Unix format used fixed 14-character area for the name
• Or a variable length

‒ Makes managing the space allocation for the names more difficult

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Other Naming Implementation Choices
What is the format of a file name?
• Fixed format

‒ Example original MS-DOS file system: Maximum of 8 characters "."
maximum of 3 characters, and for letters, only uppercase allowed

• Arbitrary string of any (or almost any) characters
‒ Example Unix: Literally any character other than '\0' and '/'

What is the structure and organization of a directory?
• An unsorted list of entries, or a sorted list
• A hash table (on disk, of course)
• Something else?

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Example: MS-DOS Directory Entry (Like An Inode)
struct direntry
{

char name[8]; /* file name, before the "." */
char extension[3]; /* file name extension, after the "." */
char attributes; /* protection and other attributes */
char unused[10]; /* unused bytes in directory entry */
char time[2]; /* last modified time */
char date[2]; /* last modified date */
unsigned short first; /* first block number of file’s data */
unsigned int size; /* file’s size in bytes*/

};

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Example: Classical Unix Directory Entry
#define DIRSIZ 14

struct direct
{

ino_t d_ino; /* inode number of the file itself */
char d_name[DIRSIZ]; /* this name for the file */

};

Note that the name is not null-terminated ('\0') in d_name
• The name ends at the first null byte '\0’ in d_name
• Or after DIRSIZ number of characters
• Whichever occurs first (a 14-character name has no '\0’)
• In MS-DOS, the name and extension are also not null-terminated

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Example: Classical Unix Inode
struct dinode
{

unsigned short di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
short di_uid; /* owner's user id */
short di_gid; /* owner's group id */
off_t di_size; /* number of bytes in file */
char di_addr[40]; /* disk block addresses */
time_t di_atime; /* time last accessed */
time_t di_mtime; /* time last modified */
time_t di_ctime; /* time created */

};

di_addr bytes: 39 bytes used; 13 addresses, 3 bytes each

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Adding Subdirectories: A Tree-Structured Directory
There needs to be a designated “root” directory
• Could be a preallocated contiguous chunk of disk blocks

‒ But how do you know where that preallocated chunk of disk blocks is?
• Or could be managed the same as any other file

‒ But how do you find that file, since it’s name must be interpreted relative
to the root directory?

We need to be able to link subdirectories together in a tree
• This part is easy: Just need to be able to mark the “type” of a file as either a

“regular” type file or a directory type file

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Example: MS-DOS Root Directory
A preallocated contiguous chunk of disk blocks

• The boot block contains code to boot the kernel

• It also describes the size of the FAT and the
number (1 or 2) of FATs

• It also describes the size of the root directory

• The root directory immediate follows the last FAT

• The root directory must then be a single
contiguous chunk of disk space

Boot Block

FAT

Duplicate FAT

Root Directory

. . .

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Example: MS-DOS Linking Subdirectories Together
struct direntry
{

char name[8]; /* file name, before the "." */
char extension[3]; /* file name extension, after the "." */
char attributes; /* protection and other attributes */
char unused[10]; /* unused bytes in directory entry */
char time[2]; /* last modified time */
char date[2]; /* last modified date */
unsigned short first; /* first block number of file’s data */
unsigned int size; /* file’s size in bytes*/

};

Attribute bit 0x10 means file is a directory (its data is subdirectory entries)

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Example: Unix Root Directory
Managed the same as any other file
• That file is always described by inode number 2
• A fixed, constant, well-known inode number
• The directory entries are then stored in the same

way as the data for any other file
‒ In the data blocks “hanging off of” inode 2

• Why inode number 2?
‒ Inode number 0 is not used, so that a 0 in an

inode number field can be a special value
‒ Historically, inode number 1 was used for a

“file” containing the bad blocks on the disk

2

. . .

boot block
superblock

inodes

data blocks

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Example: Unix Linking Subdirectories Together
struct dinode
{

unsigned short di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
short di_uid; /* owner's user id */
short di_gid; /* owner's group id */
off_t di_size; /* number of bytes in file */
char di_addr[40]; /* disk block addresses */
time_t di_atime; /* time last accessed */
time_t di_mtime; /* time last modified */
time_t di_ctime; /* time created */

};

Mode bit 040000 means file is a directory (its data is subdirectory entries)

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

An Example Unix Directory Tree

type = DIR inode #2

type = DIR inode #73 type = REG inode #19 type = DIR inode #99

type = REG inode #12 type = REG inode #57 type = DIR inode #80

main.c19bin73 usr99

sh57ls12 . . .src80

test.c61main.c33 . . .

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

An Example Unix Directory Tree

19 99

12 57 80

2

33 61

73

...

...

main.c

test.c

= DIR inode = REGULAR inode

Legend:

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

Shorthand for Pathnames
Each process has a current directory
• The inode number of a process’s current directory is remembered in PCB
• Set to “home” directory at login (by the “login” command before exec shell)
• Changed by chdir() file system operation (called by “cd” command)
• Looking up a pathname:

‒ If pathname[0] == ‘/’, this is an absolute pathname
o Start lookup at inode number 2 and the directory entries hanging off it

‒ Otherwise, this is a relative pathname
o Start lookup at inode number remembered in process’s PCB and the

directory entries hanging off it it
• Saves typing, but also improves efficiency since fewer steps in a relative lookup

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Shorthand for Pathnames
The “.” and “..” names
• Doing things like “./myprogram” or “ cd ../otherdir” are not special cases

• The first two entries in every directory have the names “.” and “..”
‒ Inode number in “.” entry is the directory’s own inode number
‒ Inode number in “..” entry is the directory’s parent’s inode number
‒ In the root directory (inode 2), the inode number for “..” entry is also 2

• The “.” and “..” entries are always created as part of creating the directory
itself and cannot be removed

‒ The “.” and “..” entries are really there, on disk, in every directory

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

Mounting File Systems
What if you have more than one hard disk?
• Examples: 2 separate hard disks, removable flash memory sticks
• Impossible to manage inode numbers to be unique between all of these!
• Instead, use the same ranges of inode numbers on each, starting at

inode number 2 as the root of each
• The first file system is mounted automatically at boot as the root file system

2

Disk 1

2

Disk 2

2

Flash stick 1

2

Flash stick 2

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

Mounting File Systems
Combine separate file systems into what appears as a single file system tree

• mount(file_system_device_name,
existing_directory_name, options)

• Adds an entry to the file system
mount table in the kernel

‒ Such that a reference to the inode
number of that existing directory name

‒ … will be turned into a reference to
inode 2 on that mounted device

For current directory, remember the mounted
device id as well as the inode number in PCB

2

Disk 1
2

Disk 2

2

Flash stick 1
2

Flash stick 2

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

Background: Device IDs
A device id is of the form (major device id, minor device id)
• Major device id indicates the type of the device

‒ Indicates which device driver to use for operations on that device
‒ An index into an array of structs
‒ Each struct contains pointers to the function for each kind of operation

for that type of device
• Minor device id indicates which device of that (major) device type

‒ Generally serves as an index into an array of structs
‒ Each struct contains the variables for that instance of this type of device

• The (major, minor) combination is unique among all devices
‒ So device id and inode number is unique among all inodes

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

Creating a “Link” to an Existing File
Creates a new directory entry with the existing file’s inode number in it:

• link(oldname, newname) Example: link(“abc”, “def”)

• Inode nlink field keeps a count of these links to that same inode
‒ nlink = count of directory entries with that inode number in them
‒ nlink incudes the “.” and “..” directory entries

(but I will ignore those for clarity in the following slides here)

abc42 def42

file size block numbersinode # 42

Existing directory entry New directory entry

19

20

11

Copyright © 2025 David B. JohnsonCOMP 321 Page 21

The Corresponding “Unlink” Operation to Remove
Removes a name for the file, and may remove the inode and data blocks

• unlink(oldname) Example: unlink(“dir1/dir2/dir3/abc”)

• Always removes the directory entry for oldname

‒ Example: Removes the “abc” entry in directory “dir1/dir2/dir3”
• And if then no other way to reach that inode, frees the inode and the data blocks

‒ Inode nlink field is incremented on Link(oldname, newname)

‒ Inode nlink field is decremented on Unlink(oldname)

‒ If then the inode nlink field == 0, then also free that inode and the data blocks

Copyright © 2025 David B. JohnsonCOMP 321 Page 22

What Does it Mean to “Remove” a Directory Entry?
The literal interpretation (inefficient and unnecessary):
• Actually remove that directory entry

‒ Copy every byte of the directory after this one entry “up” by the size of the
directory entry being removed

‒ Or copy the last entry in the directory on top of the one being removed
• Change the “size” field in the directory’s inode to reflect the removed bytes

The better interpretation (sufficient, much more efficient, and commonly used):
• Just change the inode number in that directory entry to 0 (that’s all!)
• When reading through a directory, ignore (skip over) entries with inode number == 0
• Do not change the “size” field in the directory’s inode since those bytes are still there

21

22

12

Copyright © 2025 David B. JohnsonCOMP 321 Page 23

Problems with Links to a Directory

• What should “..” for “/c” be? Is it the “/” inode or the “/a/b” inode?

• Recursive traversal like “ls -R /” could now visit a same subtree more than once

• And a link to a directory could create a loop in the file system directory “tree”

a

b

c d

a

b

c

d

Copyright © 2025 David B. JohnsonCOMP 321 Page 24

Problems with Links to a Directory
Big problem with creating such a loop in the file system directory “tree”
• The inode for “/a” nlink value is initially 1
• Creating a new link “d” to this directory

increases nlink from 1 to 2
• Then, unlink of “a” changes this nlink value

from 2 back down to 1
‒ Since nlink did not go to 0, that inode

and its data blocks are not freed!
‒ But this entire subtree containing

5 inodes and many data blocks is now
inaccessible and lost!

nlink = 1
nlink = 2

a

b

c d

nlink = 1

23

24

13

Copyright © 2025 David B. JohnsonCOMP 321 Page 25

Problems with Links to a Directory
There is no practical way to check if a new directory link creates a loop
• Would require, e.g., traversing the tree to see if you can

come back to the same inode
• But the tree lives on the disk, so would be very, very slow!

No practical way to check if unlink detaches subtree
• Would require, e.g., traversing the tree to see

if you can still reach all inodes in use
• But the tree lives on the disk, so very, very slow!

Standard solution: Prohibit new links to directories

nlink = 1
nlink = 2

a

b

c

nlink = 1

d

Copyright © 2025 David B. JohnsonCOMP 321 Page 26

Symbolic Links
An alternative way of representing a link in the file system:
• Regular links are often called “hard links” to distinguish from symbolic links
• Problems with hard links:

‒ Hard links to directories are prohibited due to loop problems
‒ Cannot represent a hard link to a file on a different mounted file system

o The hard link target is just represented as the inode number
o And inode numbers on each mounted file system are the same!

‒ Once created, no way to tell which name is the original name or the
“primary” name for the file
o All links, even the original name, all look identical

• Symbolic links do not have these problems

25

26

14

Copyright © 2025 David B. JohnsonCOMP 321 Page 27

Creating a Symbolic Link
Creates a new directory entry pointing to a new inode:

• symlink(oldname, newname) Example: symlink(“/xyz/abc”, “def”)

• Allocates a new inode of type = SYMLINK
• Creates a new directory entry “def” with this new inode number in it
• Data block for new inode contains the character string name of the link

target “/xyz/abc”, just as if it was a regular file containing those characters
• New inode’s nlink value is initialized, as usual, to 1
• Old existing inode’s nlink value is not changed

And the oldname does not even need to exist – it is just a character string

Copyright © 2025 David B. JohnsonCOMP 321 Page 28

abc

Comparing Hard Links vs. Symbolic Links

. . . nlink = 1 . . .
inode # 42

42 abc

. . . nlink = 1 . . .
inode # 42

. . . nlink = 1 . . .
inode # 81

42 abc

symlink(“abc”, “def”)link(“abc”, “def”)

81 def
42 def

nlink = 2

27

28

15

Copyright © 2025 David B. JohnsonCOMP 321 Page 29

Using a Symbolic Link – for Example, on open()
• Look up the pathname as normal
• If you encounter a symbolic link inode, recurse to look up that target name
• Recursive call returns found inode and device id, so resume the original

lookup there
‒ Just like the original lookup started at (root device id, 2) or at

(current directory device id, current directory inode number)
• Example: “/abc/def/ghi”, but “def” directory entry points to a symbolic link

inode with data “/123/456”, so recursively lookup of “/123/456”
‒ When that recursive call returns, resume original lookup there
‒ Means look up “ghi” starting at that (device id, inode number)

Copyright © 2025 David B. JohnsonCOMP 321 Page 30

Relative Pathnames as a Symbolic Link Target
• Cannot meaningfully treat this as relative to a process’s current directory

‒ The current directory may be different for the process that created the
symbolic link and any process that uses the symbolic link

‒ Would result in a different meaning for the symbolic link, which doesn’t
make much sense

• Instead, the relative symbolic link target is treated as relative to the directory
in which it was found

• Example: “/abc/def/ghi”, but “def” directory entry points to a symbolic link to
relative pathname “123/456”

‒ Recursive look up “123/456” starting at directory where “def” was found
‒ Meaning start at the same device id and inode you were already at

29

30

16

Copyright © 2025 David B. JohnsonCOMP 321 Page 31

What About Loops from Creating Symbolic Links?
Seemingly the same problem as for hard links, but actually not a problem
• When looking up a pathname, you can tell you are traversing a symbolic link

rather than a hard link
• Simply place a finite limit on the number of symbolic link traversals in a single

overall pathname lookup
‒ Example: Linux limit is 20, FreeBSD Unix limit is 32
‒ If limit is exceeded, terminate the lookup and return an error

(ELOOP = “Too many levels of symbolic links”)
• Such a solution for hard links would limit the maximum height of the entire

file system tree, but it does not when applied only to symbolic links traversed
• And you can also decide whether or not to follow symbolic links on, e.g., ls -R

31

