
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

File System Kernel and Library Calls

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Creating a New Hard Link

Creates a new hard link to the existing file indicated by oldpath
• newpath is the name for the new hard link

‒ The directory for newpath must already exist
‒ link() creates only a single new directory entry – and it has the same inode

number in it as the existing inode for oldpath
• Example: link(“/abc/def”, “123/4567/890”)

‒ The directory “123/4567” must already exist
‒ Creates the new name “890” in that directory

• If newpath already exists, returns -1 with errno = EEXIST

int link(const char *oldpath, const char *newpath);

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Creating a New Symbolic Link

Creates a new symbolic link to the given target name
• linkpath is the name for the new symbolic link

‒ The directory for linkpath must already exist
‒ symlink() creates only a single new directory entry

• Example: symlink(“abc/def”, “123/4567/890”)
‒ The directory “123/4567” must already exist
‒ Creates the new name “890” in that directory

• The file target normally should exist but does not need to exist now
• If linkpath already exists, returns -1 with errno = EEXIST

int symlink(const char *target, const char *linkpath);

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Removing a Hard Link (and a File)

Removes the hard link given as the last component of pathname
• Removes only that single directory entry from the given directory
• Example: unlink(“123/4567/890”)

‒ Removes the name “890” in that directory
• If pathname refers to a directory, returns -1 with errno = EISDIR
• If pathname refers to a symbolic link, the symbolic link (not the target of

that link) is removed
• If this is the last hard link to that inode, the inode and data blocks are freed

‒ But if any file descriptors are open to it, not until they are all closed

int unlink(const char *pathname);

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Reading a Symbolic Link’s Target Name

Returns the target name for pathname into the buffer buf
• Roughly like fd = open(pathname), then read() and close() that fd

‒ But doing that would instead open and read from the target file itself
‒ readlink() does not “follow through” the symbolic link, but instead

accesses the symbolic link itself
• readlink() returns the length of the target name

‒ Does not add a null ‘\0’ byte to the end in buf
‒ And if bufsiz isn’t large enough, readlink() silently truncates the part of the

target name returned in buf

ssize_t readlink(const char *restrict pathname,
char *restrict buf, size_t bufsiz);

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Renaming a File

Changes the name of an existing file and/or moves the file
• The directories leading to the last component in oldpath and newpath must all

already exist
‒ Only modifies the last component in the oldpath and newpath directories

• May change the name within the same directory
‒ Example: rename(“abc/def/ghi”, “abc/def/xyz”)

• And/or may change that name into a different directory
‒ Example: rename(“abc/def/ghi”, “/123/456/ghi”)

• If oldpath or newpath refer to a symbolic link, it operates on the symbolic link

int rename(const char *oldpath, const char *newpath);

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Making a Directory

Makes a new directory given by pathname
• The directories leading to last component in pathname must all already exist

‒ Only makes the new directory itself there
• Automatically creates the “.” and “..” links in that new directory
• The protection for the new directory is given by “mode”
• Example: mkdir(“/abc/def/ghi”)

‒ Makes the new directory “ghi” in the existing directory “/abc/def”

int mkdir(const char *pathname, mode_t mode);

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Removing a Directory

Removes the existing directory given by pathname
• Only removes the last component of pathname, which must be a directory
• Example: rmdir(“/abc/def/ghi”)

‒ Removes the directory “ghi” from the directory “/abc/def”
• The directory to be removed must be “empty”

‒ It must contain only that directory’s “.” and “..” entries
‒ (and possibly “deleted entries with the inode number set to 0)
‒ The nlink for the directory will be 2 (name from above and its “.” entry)

• Frees the directory’s inode and its data blocks

int rmdir(const char *pathname);

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Setting a Process’s Current Directory

Changes the calling process’s current directory to “path”
• That directory becomes its starting point for looking up relative pathnames
• The current directory of a process is remembered in its PCB as the inode

number and device id of that directory (not the directory’s name, e.g., path)
‒ That directory is found and remembered at chdir() time
‒ It thus does not matter if later, any directory is renamed
‒ It thus does not matter if later, permissions are changed to no longer allow

the process access to the directories in “path”
• Called by the shell built-in command “cd”

int chdir(const char *path);

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Reading a Directory (Like What “ls” Does)
The OLD way was easy: just open() it and read() it
• The contents bytes were in the form of directory entries, such as

struct direct /* total of 16 bytes per entry */
{

ino_t d_ino; /* inode number of the file */
char d_name[14]; /* the (or, a) name for the file */

};

• Simple, but it means the format of a directory (and of all directory entries)
must be known by “everybody”

‒ Very hard to evolve the format (e.g., newer versions of Unix/Linux), such as
including longer filenames or extra information in a directory entry

• Now, any attempt to read() from a directory returns -1 with errno = EISDIR

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Reading a Directory (Like What “ls” Does)
The NEW way uses a library interface similar to stdio
• An open directory stream is represented by a “DIR *” (like stdio “FILE *”)
• Reading from the “DIR *” stream returns an “imaginary” (abstract)

representation for each directory entry – this is the Linux definition
struct dirent {

ino_t d_ino; /* inode number */
off_t d_off; /* identification of this “location” in the directory */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file (for supported filesystems) */
char d_name[256]; /* null-terminated filename */

};

• This is returned to the library from a kernel call that should not otherwise be
used (see “man 3 readdir”, not “man 2 readdir” and not “man 2 getdents”)

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Opening a Directory

Two ways to get a “DIR *” for operations on a directory
• Open it by pathname “name”

‒ The “DIR *” stream starts positioned at the first directory entry
• Open it by, e.g., open() to get a file descriptor and then access by a “DIR *”

‒ Yes, you can still open() a directory, even though can’t read() from it
‒ The “DIR *” stream starts at a position determined by the current position

for file descriptor fd
• On error, NULL is returned and errno is set

DIR *opendir(const char *name);
DIR *fdopendir(int fd);

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Reading from a Directory

Each readdir() call returns the next single directory entry in this directory
• Returns a pointer to an image of that directory entry

‒ It may be statically allocated, do not try to free() it
‒ This memory may be overwritten by the next call to readdir() for the same

directory stream
• Returns NULL if there are no more entries in this directory

‒ Also returns NULL on any error, with errno set to show which error
‒ Recommendation: set errno = 0 before readdir() call to tell the difference

• Again, see “man 3 readdir”, not “man 2 readdir” and not “man 2 getdents”

struct dirent *readdir(DIR *dirp);

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

The d_reclen Field Returned by readdir()
The format retuned by readdir() contains one (whole) directory entry
• Again, the format (in Linux) returned looks like this

struct dirent {
ino_t d_ino; /* inode number */
off_t d_off; /* identification of this “location” in the directory */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file (for supported filesystems) */
char d_name[256]; /* null-terminated filename */

};

• The size of the d_name field may not really be 256, but it holds the whole
name (and a ‘\0’ null termination)

• The d_reclen field is the big enough for this entire (abstract) struct dirent

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

The d_type Field Returned by readdir()
Similar to the S_IFMT part of st_mode returned by stat() and fstat()

• DT_BLK This is a block device
• DT_CHR This is a character device
• DT_DIR This is a directory
• DT_FIFO This is a named pipe (FIFO)
• DT_LNK This is a symbolic link
• DT_REG This is a regular file
• DT_SOCK This is a UNIX domain socket
• DT_UNKNOWN The file type could not be determined

Available for most filesystem types (but may be DT_UNKNOWN for others)

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Moving Around within a “DIR *” Directory Stream

• telldir() returns an abstract indication of the current location in the stream
‒ The d_off field returned by readdir() is the same kind of abstract location
‒ Both are usable only for future calls to seekdir() on this “DIR *” stream
‒ These are not (necessarily) a byte offset within the data in the directory

• seekdir() moves the “DIR *” stream to the indicated abstract location within it
• rewinddir() moves the “DIR *” stream to the beginning (first directory entry)

long telldir(DIR *dirp);
void seekdir(DIR *dirp, long loc);
void rewinddir(DIR *dirp);

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

Closing an Open Directory Stream

Closes the directory stream and frees any resources from the open
• Frees the memory allocated at open at the “DIR *” address
• And closes the corresponding file descriptor

‒ From an opendir(), that file descriptor was internally opened
‒ From an fdopendir(), that file descriptor was already open then but is still

closed on the closedir() call
• The “DIR *” pointer dirp is not useable after this call
• Returns -1 on any error, with errno set appropriately

int closedir(DIR *dirp);

17

