File System Kernel and Library Calls

COMP 321

Dave Johnson

% RICE

COMP 321 Copyright © 2025 David B. Johnson Page 1

Creating a New Hard Link

int link(const char *oldpath, const char *newpath);

Creates a new hard link to the existing file indicated by oldpath
* newpath is the name for the new hard link
—The directory for newpath must already exist

—link() creates only a single new directory entry — and it has the same inode
number in it as the existing inode for oldpath

* Example: link(“/abc/def”, “123/4567/890")
—The directory “123/4567” must already exist
— Creates the new name “890” in that directory
* If newpath already exists, returns -1 with errno = EEXIST

COMP 321 Copyright © 2025 David B. Johnson Page 2




Creating a New Symbolic Link

int symlink(const char *target, const char *linkpath);

Creates a new symbolic link to the given target name
* linkpath is the name for the new symbolic link
—The directory for linkpath must already exist
—symlink() creates only a single new directory entry
* Example: symlink(“abc/def”, “123/4567/890")
—The directory “123/4567” must already exist
— Creates the new name “890” in that directory
* The file target normally should exist but does not need to exist now
* If linkpath already exists, returns -1 with errno = EEXIST

COMP 321 Copyright © 2025 David B. Johnson

Page 3

Removing a Hard Link (and a File)

int unlink(const char *pathname);

Removes the hard link given as the last component of pathname
* Removes only that single directory entry from the given directory
* Example: unlink(“123/4567/890”)

— Removes the name “890” in that directory
* |f pathname refers to a directory, returns -1 with errno = EISDIR

* If pathname refers to a symbolic link, the symbolic link (not the target of
that link) is removed

* |f this is the last hard link to that inode, the inode and data blocks are freed

—But if any file descriptors are open to it, not until they are all closed

COMP 321 Copyright © 2025 David B. Johnson

Page 4




Reading a Symbolic Link’s Target Name

ssize_t readlink(const char *restrict pathname,
char *restrict buf, size_t bufsiz);

Returns the target name for pathname into the buffer buf
* Roughly like fd = open(pathname), then read() and close() that fd
— But doing that would instead open and read from the target file itself

—readlink() does not “follow through” the symbolic link, but instead
accesses the symbolic link itself

* readlink() returns the length of the target name
—Does not add a null \0’ byte to the end in buf

—And if bufsiz isn’t large enough, readlink() silently truncates the part of the
target name returned in buf

COMP 321 Copyright © 2025 David B. Johnson Page 5

Renaming a File

int rename(const char *oldpath, const char *newpath);

Changes the name of an existing file and/or moves the file

* The directories leading to the last component in oldpath and newpath must all
already exist

— Only modifies the last component in the oldpath and newpath directories
* May change the name within the same directory

— Example: rename(“abc/def/ghi”, “abc/def/xyz”)
* And/or may change that name into a different directory

— Example: rename(“abc/def/ghi”, “/123/456/ghi”)
* If oldpath or newpath refer to a symbolic link, it operates on the symbolic link

COMP 321 Copyright © 2025 David B. Johnson Page 6




Making a Directory

int mkdir(const char *pathname, mode_t mode);

Makes a new directory given by pathname
* The directories leading to last component in pathname must all already exist

— Only makes the new directory itself there
* Automatically creates the “”” and “.” links in that new directory
* The protection for the new directory is given by “mode”
* Example: mkdir(“/abc/def/ghi”)
— Makes the new directory “ghi” in the existing directory “/abc/def”

COMP 321 Copyright © 2025 David B. Johnson Page 7

Removing a Directory

int rmdir(const char *pathname);

Removes the existing directory given by pathname
* Only removes the last component of pathname, which must be a directory
* Example: rmdir(“/abc/def/ghi”)

— Removes the directory “ghi” from the directory “/abc/def”
* The directory to be removed must be “empty”

— It must contain only that directory’s “” and “..” entries

— (and possibly “deleted entries with the inode number set to 0)

—The nlink for the directory will be 2 (name from above and its “” entry)
* Frees the directory’s inode and its data blocks

COMP 321 Copyright © 2025 David B. Johnson Page 8




Setting a Process’s Current Directory

int chdir(const char *path);

Changes the calling process’s current directory to “path”
* That directory becomes its starting point for looking up relative pathnames

* The current directory of a process is remembered in its PCB as the inode
number and device id of that directory (not the directory’s name, e.g., path)

—That directory is found and remembered at chdir() time
— It thus does not matter if later, any directory is renamed

— It thus does not matter if later, permissions are changed to no longer allow
the process access to the directories in “path”

* Called by the shell built-in command “cd”

COMP 321 Copyright © 2025 David B. Johnson Page 9

Reading a Directory (Like What “Is” Does)

The OLD way was easy: just open() it and read() it
* The contents bytes were in the form of directory entries, such as

struct direct /* total of 16 bytes per entry */
{
ino_t d_ino; /* inode number of the file */
char d_name[14]; /* the (or, a) name for the file */
|7

* Simple, but it means the format of a directory (and of all directory entries)
must be known by “everybody”

—Very hard to evolve the format (e.g., newer versions of Unix/Linux), such as
including longer filenames or extra information in a directory entry

* Now, any attempt to read() from a directory returns -1 with errno = EISDIR

COMP 321 Copyright © 2025 David B. Johnson Page 10

10




Reading a Directory (Like What “Is” Does)

The NEW way uses a library interface similar to stdio
* An open directory stream is represented by a “DIR *” (like stdio “FILE *”)

* Reading from the “DIR *” stream returns an “imaginary” (abstract)
representation for each directory entry — this is the Linux definition
struct dirent {
ino_t d_ino; /* inode number */
off t d_off; /* identification of this “location” in the directory */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file (for supported filesystems) */
char d_name[256]; /* null-terminated filename */

|7

* This is returned to the library from a kernel call that should not otherwise be
used (see “man 3 readdir”, not “man 2 readdir” and not “man 2 getdents”)

COMP 321 Copyright © 2025 David B. Johnson Page 11

11

Opening a Directory

DIR *opendir(const char *name);
DIR *fdopendir(int fd);

Two ways to get a “DIR *” for operations on a directory

* Open it by pathname “name”
—The “DIR *” stream starts positioned at the first directory entry

* Open it by, e.g., open() to get a file descriptor and then access by a “DIR *”
- Yes, you can still open() a directory, even though can’t read() from it

—The “DIR *” stream starts at a position determined by the current position
for file descriptor fd

* On error, NULL is returned and errno is set

COMP 321 Copyright © 2025 David B. Johnson Page 12

12




Reading from a Directory

struct dirent *readdir(DIR *dirp);

Each readdir() call returns the next single directory entry in this directory
* Returns a pointer to an image of that directory entry
— It may be statically allocated, do not try to free() it

—This memory may be overwritten by the next call to readdir() for the same
directory stream

* Returns NULL if there are no more entries in this directory

—Also returns NULL on any error, with errno set to show which error

— Recommendation: set errno = 0 before readdir() call to tell the difference
* Again, see “man 3 readdir”, not “man 2 readdir” and not “man 2 getdents”

COMP 321 Copyright © 2025 David B. Johnson Page 13

13

The d_reclen Field Returned by readdir()

The format retuned by readdir() contains one (whole) directory entry
* Again, the format (in Linux) returned looks like this
struct dirent {
ino_t d_ino; /* inode number */
off t d_off; /* identification of this “location” in the directory */
unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file (for supported filesystems) */
char d_name[256]; /* null-terminated filename */

|7

* The size of the d_name field may not really be 256, but it holds the whole
name (and a ‘\0’ null termination)

* The d_reclen field is the big enough for this entire (abstract) struct dirent

COMP 321 Copyright © 2025 David B. Johnson Page 14

14




The d_type Field Returned by readdir()

Similar to the S_IFMT part of st_mode returned by stat() and fstat()

* DT_BLK This is a block device

* DT_CHR This is a character device

* DT_DIR This is a directory

* DT_FIFO This is a named pipe (FIFO)
* DT_LNK This is a symbolic link

* DT_REG This is a regular file

* DT_SOCK This is a UNIX domain socket
* DT_UNKNOWN The file type could not be determined

Available for most filesystem types (but may be DT_UNKNOWN for others)

COMP 321 Copyright © 2025 David B. Johnson Page 15

15

Moving Around within a “DIR *” Directory Stream

long telldir(DIR *dirp);
void seekdir(DIR *dirp, long loc);
void rewinddir(DIR *dirp);

* telldir() returns an abstract indication of the current location in the stream
—The d_off field returned by readdir() is the same kind of abstract location
— Both are usable only for future calls to seekdir() on this “DIR *” stream
—These are not (necessarily) a byte offset within the data in the directory

* seekdir() moves the “DIR *” stream to the indicated abstract location within it

* rewinddir() moves the “DIR *” stream to the beginning (first directory entry)

COMP 321 Copyright © 2025 David B. Johnson Page 16

16




Closing an Open Directory Stream

int closedir(DIR *dirp);

Closes the directory stream and frees any resources from the open
* Frees the memory allocated at open at the “DIR *” address
* And closes the corresponding file descriptor

—From an opendir(), that file descriptor was internally opened

— From an fdopendir(), that file descriptor was already open then but is still
closed on the closedir() call

* The “DIR *” pointer dirp is not useable after this call
* Returns -1 on any error, with errno set appropriately

COMP 321 Copyright © 2025 David B. Johnson Page 17

17




