
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Protection Concepts and Methods

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

File Protection: Comparing Alternatives
Unix file protection
• Each process PCB has a user id and a group id, set at login and from fork()
• Each inode has fields to store the owner and protection for the file

‒ a user id and group id owner, set from process that created it
‒ a “mode” with 3 sets of 3 protection bits for read/write/execute protection

r w x r w x r w x

Controls if PCB.uid = inode.uid Controls otherwise

Controls if PCB.uid ≠ inode.uid
but PCB.gid = inode.gid

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

The meaning of “read” and “write” protection is simple
• Read means can read the contents of the file
• Write means can modify the contents of the file

But “execute” protection is less straightforward
• For a regular file

‒ Can use file on an execve() kernel call, independent of read protection
• For a directory

‒ Can use names within that directory (this is sometimes called search or
traverse protection)

‒ Read protection on a directory allows you to read the directory to learn
the names in the directory, but execute allows you to use those names

The Meaning of Unix Read/Write/Execute Bits

r w x r w x r w x

user othergroup

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Changing Permissions on a File

Changes the permissions on the existing file given by pathname
• pathname may refer to a regular file or a directory or a symbolic link

‒ If a symbolic link, it follows through and changes permissions on the target
• Example: chmod(“/abc/def/ghi”, 0755)

‒ Changes the permissions on the inode specified by “ghi” in the
directory “/abc/def”

int chmod(const char *pathname, mode_t mode);

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Simple common examples
• Regular file: 600 or 644
• Program file: 700 or 755
• Directory: 700 or 755

A more complex example
• Imagine a directory somewhere named parentdir/secretdir
• Protection on secretdir is 777 – everybody can write into it (create files in it)
• The real name of secretdir is only inside some program secretprog

‒ secretprog is 711 – everybody can execve() it but can’t see its contents
• Protection on parentdir is 711 – everybody can use names in it but not “ls” it

Unix File Protection Examples

r w x r w x r w x

user othergroup

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Changing a File’s Ownership

Changes the ownership of the existing file given by pathname
• pathname may refer to a regular file or a directory or a symbolic link

‒ If a symbolic link, it follows through and changes ownership of the target
• Example: chown(“/abc/def/ghi”, 987, 654)

‒ Changes ownership on the inode specified by “ghi” in the directory
“/abc/def”

‒ The new user id owner will be 987, the new group id owner will be 654
• If owner is -1, then the owner id on the inode is not changed
• If group is -1, then the group id on the inode is not changed

int chown(const char *pathname, uid_t owner, gid_t group);

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Three additional protection bits in Unix “mode”

Changing a file (inode) owner uid or gid
• chown() kernel call can ony be done if PCB.uid == file.uid

Unix superuser (similar to, e.g., Windows Administrator)
• If PCB.uid == 0 (“root”), user can do “anything”

Other Unix Protection Concepts
 r w x r w x r w x

user othergroup
setuid: set PCB.uid to inode.uid on execve()
setgid: set PCB.gid to inode.gid on execve()

On a directory inode = restricted delete
(can only delete a file in it if PCB.uid = file.uid)

On a regular inode = sticky bit (but now unused)

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Setting a Process’s Creation Mode Mask

Sets the mask in the calling process’s PCB, returns its old value
• Affects the protection on new files or directories created by this process

‒ Useful using programs that create files using their own fixed mode value
• Any bit that is SET in “mask” will NOT be set for the new file or directory

‒ Result is (requested mode) & ~mask
• Examples after doing umask(022)

‒ creat(“abc/def”, 0666) – resulting protection will be 0644
‒ open(“abc/def”, O_CREAT|O_TRUNC|O_RDWR, 0666) – the same
‒ mkdir(“/123/456”, 0777) – resulting protection will be 0755

mode_t umask(mode_t mask);

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

File Protection: Comparing Alternatives
Windows file protection
• Equivalent of an inode is a record in the Master File Table (MFT)
• Each file (i.e., MFT record) is protected by an explicit access control list (ACL)
• Lists individual explicit users (“principals” or “trustees”)

‒ user name or group name
‒ For each, what operations they can/can’t do (“rights” or “permissions”) on

the file using that ACL
• Two models for NTFS permissions (“basic” or “advanced”):

‒ basic: 6 different permissions defined (only 5 apply to files, 6 to directories)
‒ advance: 13 different permissions defined
‒ The 6 basic ones overlap each other, and the advanced ones even more so!

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Windows Basic ACL Permissions

For a DirectoryFor a File

List contents,
View attrib/owner/perm

Read contents,
View attrib/owner/perm

Read

Create new names in,
Change atrrib/owner/perm

Change contents,
Change attrib/owner/perm

Write

List names inList Contents

Read, List Contents,
Traverse

Read, Execute (run)Read + Execute

Delete dir, Read + ExecuteWrite, Delete fileModify

AnythingAnythingFull Control

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Implementing NTFS Access Control Lists
NTFS originally stored ACL in Security Descriptor attribute in each MFT record
• Problem: Many files have the same ACL, so wastes space repeating them

Instead, NTFS 3.0 moved all ACLs into a single global “file”
• Added a SecurityId to the “standard information” attribute in each MFT

record = as a hash of the full ACL for the file
• All actual ACLs are now stored together in the “security file” at MFT record 9

‒ (Equivalent to using a fixed inode number 9, like the root inode number)
‒ Only one copy of each different ACL needs to be stored
‒ Contents organized as a B-Tree (similar to an NTFS directory), sorted by

the SecurityID hash value
‒ If new ACL is not found in the B-Tree, it is added (once)

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Generalized Protection Concepts
Protection is enforced on objects
• Examples: files, processes, memory, devices, . . .

Each process is in exactly one protection domain
• A list of all objects, and for each object, a list of that process’s rights for that

object (permission to perform some operation on that object)
• Example: In Unix for most objects, a process’s uid and gid in its PCB define

which protection domain the process is in
‒ Unix protections are based on these two numbers
‒ File protections, already discussed in this lecture
‒ Kill another process (only if the uid of that process matches yours)
‒ Uid = 0 means that you are the “superuser” and can do “anything”

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

The Access Matrix Represents All Protections

One row for each protection domain, and one column for each object
• Problem: The access matrix is huge!
• Problem: The access matrix is sparse

. . .Process 2Process 1. . .File 3File 2File 1Domain
-killRX-RWXD1
--RXRX-D1

kill--RWX-D3
killkillRWX-RXD4

.
kill-RX-RWXDn

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

Access Control Lists
Essentially, is the non-empty entries in a single column of the access matrix
• Store the ACL in a way associated with the object that is protects
• Must, of course, store it in a way that is, itself, protected
• Example: Windows NTFS ACL used for file protection

‒ A file’s MFT record “standard information” attribute gives SecurityID
‒ Serves as an index into the B-Tree in the “security” file at MFT record 9
‒ That “security” file at MFT record 9 is also protected by an ACL, stored in

the “security” file at MFT record 9
‒ So the “security” file protects itself!

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

Capability Lists
Essentially, is the non-empty entries on a single row of the access matrix
• Each capability in the list identifies a single (object, rights) for this process
• Store the capability list associated with the process to which it applies

‒ Example: In the process’s PCB (or linked from the PCB)
‒ Capability list contents is thus protected

the same as other kernel data
• Or encrypt the capability and store it anywhere

• The basic idea originated for memory protection
‒ John K. Iliffe and Jane G. Jodeit (1962)
‒ For the Rice Institute Computer

(later known as the Rice R1 computer)! From 1959

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

Does Classical Unix Use Access Control Lists?
Most people would say “no,” but they are wrong
• You just have to look at classical Unix protection carefully
• Consider the protection defined in an inode

‒ classical 9 protection “mode” bits
‒ user id and group id owning the file

• This is a compact representation of a simple ACL
‒ Defines a simple set of rights for 3 principals

oprocess uid matches inode uid
oprocess uid doesn’t match indoe uid, but process and inode gid match
oall other processes

r w x r w x r w x

user othergroup

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

Does Classical Unix Use Capability Lists?
Most people would say “no,” but they are wrong
• You just have to look at classical Unix protection carefully
• Consider Unix open(pathname, mode) for mode = O_RDONLY,

O_WRONLY, or O_RDWR
• The kernel decides whether or not to allow the open()

‒ Using the inode’s “ACL” ! (i.e., mode bits, uid, and gid in the inode)
• But what then limits read() and write() based on mode for which opened?

‒ Kernel remembers the opened mode O_RDONLY, O_WRONLY, or O_RDWR
‒ Kernel checks each read() or write() call based only on that
‒ Not based on the indode’s mode bits, or inode’s uid or gid, or process’s

uid or gid – Only the O_RDONLY, O_WRONLY, or O_RDWR matters then!

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

Does Classical Unix Use Capability Lists?
Most people would say “no,” but they are wrong
• The open file table in each process’s PCB

‒ struct file *u_ofile[NOFILE]; // pointers to file structures of open files
‒ Indexed by file descriptor number used on read(), write(), etc.
‒ If pointer == NULL, this file descriptor is not open, so ERROR
‒ Otherwise

o That “struct file” remembers the current offset within the open file
o and stores the mode that was specified on the open()

• The kernel checks file inode protection at open() time using the inode’s “ACL”
• Then for each read() or write(), u_ofile array is the capability list, and that

pointer and its struct file are the capability, protecting read vs. write for that fd

17

18

