
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Security Attacks and Lessons

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

Types of Security Services
Authentication
• Knowing that data read or received is the same as written or sent
• And that the writer/sender is who they claim they are

Integrity
• Ensuring that data is transmitted without undetected alteration

Confidentiality
• Communicating so intended recipients know what is being said
• But unintended parties cannot determine what was said
• Traffic flow confidentiality also protects privacy of who is talking to who

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Types of Security Services (continued)
Non-repudiation
• Reader/receiver of data is able to prove that the writer/sender of it did in fact

write/send it
• Even if writer/sender later denies having done so

Replay protection
• Any message already received cannot be replayed to the receiver without

detection

Denial of service protection
• Avoiding attacks that can disable or otherwise swamp a machine

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Computer Viruses and Worms
Virus
• Code embedded in another program
• So that, when the program is run, the virus attempts to replicate by

embedding copies of its code in other programs

Worm
• A standalone program that can run on its own
• Attempts to replicate itself by spreading itself such as over networks

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Example: The “Morris Internet Worm”
Launched on evening of November 2, 1988, spread to about 10% of Internet
• Launched from computer at MIT sometime after 5:00 PM EST
• Goals of the worm

‒ Spread as quickly as possible to other computers
‒ Be hard to detect and stop

• Targeted VAX and Sun-3 computers running BSD Unix
• After 2 days, mostly cleaned up

‒ Estimated cost of dealing with it at each installation was $200 to > $53,000
‒ US General Accounting Office (GAO) estimated total loss between

$100,000 and $10,000,000

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Trial, Conviction, and Appeal
On investigation, discovered the worm was launched by Robert Tappan Morris
• Had been an undergrad at Harvard, was then first year grad student at Cornell
• First person convicted of violating the Computer Fraud and Abuse Act of 1986

‒ 18 U.S.C. Section 1030 (a) (5) (A) covers anyone who
‒ “(5) intentionally accesses a Federal interest computer without

authorization, and by means of one or more instances of such conduct
alters, damages, or destroys information in any such Federal interest
computer, or prevents authorized use of any such computer or
information, and thereby”

‒ “(A) causes loss to one or more others of a value aggregating $1,000 or
more during any one year period”

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Trial, Conviction, and Appeal
• Sentenced on May 16, 1990

‒ 3 years on probation
‒ 400 hours of community service
‒ $10,050 fine (“a fine of 10,000 and a special assessment of $50”)
‒ plus probation costs (“at a rate of $91.00 per month”)

• Appealed to Circuit Court of Appeals for the Second Circuit – verdict upheld

• Appealed to U.S. Supreme Court – declined to hear the case

• Suspended for 1 year from Cornell

• Later became a grad student at Harvard, completed his PhD there in 1999

• Now a tenured full Professor of Computer Science at MIT, and an ACM Fellow

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

https://media.syracuse.com/vintage/other/2016/01/20/Testifies%20merged.pdf

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Syracuse “Post Standard”, January 21, 2016
“Throwback Thursday: Cornell student Robert Morris guilty of unleashing
first Internet worm”

• “Ironically, the eight men and four women that would determine Morris' fate
were chosen specifically for their lack of computer knowledge. The three
prospective jurors who had home computers were immediately dismissed.”

• “In a Jan. 9, 1990 Post-Standard story, FBI agent Joseph O'Brien joked that he
could prove Morris committed a crime, but it would be tough to explain how
Morris did it.”

• “Morris greeted Judge Howard Munson's ruling with a smile. His father gave
him a handshake and Anne Morris gave her son a hug.”

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Methods of Spreading: (1) rlogin and rsh
rlogin and rsh do remote login/execution, similar to today’s ssh
• Can configure destination machine to not require a password

‒ ~/.rhosts (for specific user) or /etc/hosts.equiv (for all users)
• Worm also tried brute force password guessing, trying

‒ Based on usernames and full names on source machine, for example
“dbj”, “dbjdbj”, “Dave”, “Johnson”, “dave”, “johnson”, “jbd”

‒ An internal dictionary of 432 words
‒ The standard system dictionary, then at “/usr/dict/words”

• On success, the worm then spread to the destination machine
• Lessons: use strong passwords, and be careful if not requiring a password

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Methods of Spreading: (2) the sendmail server
The standard Unix email server for Simple Mail Transfer Protocol (SMTP)
• Server listens for connections over network for sending email to this machine
• At the time, Internet email wasn’t the only email system

‒ Many different email address formats, different gateways between systems
• To simplify debugging, sendmail server supported a DEBUG command

‒ Server then takes email destination address as a local command to fork
and exec to run (worm used “/bin/sh”), with email body as standard input

‒ Sendmail server always ran as the “root” user
‒ The default DEBUG password empty

• Lessons: Use strong passwords (even as defaults), and disable “unknown”
interfaces like this when not needed

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Methods of Spreading: (3) the finger server
Command and server for looking up information about users
• “finger dbj@machine” connects to fingerd on “machine” over the network

‒ Sends “dbj\n” to server (server’s standard input), and server returns result
• This part of the worm targeted only VAX computers, not Sun-3 computers
• The code on the server side looks like

function_name() {
char buffer[512];
. . .
gets(buffer)
. . .

}

• The finger server always ran as the “root” user

Remember the COMP 222 “Attack Lab”?

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Function return address

. . .

buffer gets filled
by gets(buffer)

buffer[0]

buffer[511]

Methods of Spreading: (3) the finger server

Function return address

. . .

buffer gets filled
by gets(buffer)

Worm sends 536 bytes!

Contents of the stack In the string sent by the worm

pushl #0068732f “/sh\0”
pushl #6e69622f “/bin”
movl sp, r10
pushl #0
pushl #0
pushl r10
pushl #3
movl sp, ap
chmk #3b execve() call

Meaning: execve(“/bin/sh”, 0, 0)

points to

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

Methods of Spreading: (3) the finger server
This is an example of what now is known as a “buffer overflow” attack
• The result was a “root” shell, with its standard input connected to network
• Other buffer overflow attacks may be less dramatic but are still dangerous
• Lessons

‒ Be very careful about whether your code can overflow a buffer
‒ Never use interfaces that can’t check for buffer overflows, for example

Don’t use Use instead
gets fgets
strcpy strncpy
strcat strncat
sprint snprintf

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

Doesn’t Execute Protection on Pages Solve This?
Hardware checking of page execute protection was not common then
• Neither the VAX nor Sun-3 hardware had any execute protection bit for pages
• The x86 hardware architecture didn’t support it until

‒ 2003 (AMD NX “no execute” bit) or
‒ 2004 (Intel XD “execution disable” bit)

• And then Microsoft had to add support for it
‒ Windows XP Service Pack 2, 2004

(DEP “Data Execution Prevention” feature)
• Then the system administrator still had to turn on that feature on each

individual machine

Copyright © 2025 David B. JohnsonCOMP 321 Page 16

A New Kind of Overflow Attack: Return-to-libc
In the attack, use executable code that’s already there!
• Can’t attack by buffer overflow putting new code into memory (on the stack)

‒ The stack is readable/writable only, and now execute protection is checked
• But you can still overflow the stack (or any other buffer)
• And a lot of code is already in memory, since most systems use shared

libraries, such as for standard C library (libc)
• libc contains many “interesting” functions useful for an attack, such as

‒ execve (and execl, execlp, execle, execv, execvp, and execvpe)
‒ popen (fork and exec, with standard input or output connected by pipe)
‒ system (run a command by the shell)

int system(const char *command);

15

16

9

Copyright © 2025 David B. JohnsonCOMP 321 Page 17

A New Kind of Overflow Attack: Return-to-libc
A simple example of a return-to-libc attack
• Overflow a buffer on the stack to overwrite the return address with address of

an existing function (e.g., address of system() function in libc)
• When current function returns, will branch to and execute that new function
• But what about the arguments to that new function?

‒ Many architectures/systems pass the function arguments on the stack
(example: 32-bit x86)

‒ “Easy”, just need to be careful to put the arguments in the right place on
the stack as part of the buffer overflow

‒ But what about architectures/systems that pass function arguments in
registers (example: 64-bit x86-64)?

Copyright © 2025 David B. JohnsonCOMP 321 Page 18

A New Kind of Overflow Attack: Return-to-libc
Example: x86-64 function calling (arguments in registers)

https://aaronbloomfield.github.io/pdr/book/x86-64bit-ccc-chapter.pdf

first argument goes
in rdi register

(note saving of rdi)

(note restoring of rdi)

17

18

10

Copyright © 2025 David B. JohnsonCOMP 321 Page 19

A New Kind of Overflow Attack: Return-to-libc
For systems that pass function arguments in registers
• Can put intended argument value on the stack as part of the buffer overflow
• Find (e.g., in libc) a small snippet of code that does (for the first argument)

• Also put two new return address on the stack as part of the buffer overflow
‒ First return address is the address of this snippet of code
‒ (intended argument value)
‒ Second return address (when that function returns) is the address of the

system() function

pop rdi
ret

pop rdi
. . . don’t change the value of rdi . . .
ret

or

Copyright © 2025 David B. JohnsonCOMP 321 Page 20

A Generalization: Return-Oriented-Programming
Chain together perhaps many code snippets, each of which ends with a return

...

19

20

11

Copyright © 2025 David B. JohnsonCOMP 321 Page 21

A Generalization: Return-Oriented-Programming
A “Turing-complete” catalog of gadgets in libc
• This means can be used to compute anything (equivalent to a Turing machine)
• See, e.g., “Return-Oriented Programming: Systems, Languages, and

Applications”, Ryan Romer, et al., ACM Transactions on Information and
System Security, March 2012

• They examined the standard libc on two architectures/systems
‒ Linux/x86 (CISC, arguments on the stack)
‒ Solaris/SPARC (RISC, arguments in registers)

• Found and described a Turing-complete catalog of gadgets found in libc on
both architectures/systems

‒ Each of length typically just 2-5 instructions
‒ Combining them can compute/do literally anything

21

