
1

Copyright © 2025 David B. JohnsonCOMP 321 Page 1

Introduction to
Cryptographic-Based Security

COMP 321

Dave Johnson

Copyright © 2025 David B. JohnsonCOMP 321 Page 2

What is Cryptography?
Mathematical techniques for securing information and communications
• From Greek, meaning essentially “secret writing”

‒ Thus, transforming data into a form such that unintended recipients
cannot understand it

• Encryption is turning the original data (called cleartext) into encrypted data
(called ciphertext)

• Decryption is the reverse: turning the ciphertext into the original cleartext
• This service is confidentiality

But cryptography is more than just providing confidentiality

1

2

2

Copyright © 2025 David B. JohnsonCOMP 321 Page 3

Secret Key (Symmetric) Encryption
The same key is used for encryption and for decryption
• The encryption and decryption function both take a key as input to

parameterize the function
• The functions need not be secret, but the key must be!
• Examples: DES, AES, IDEA, Blowfish, Twofish, …

Encryption
Function

Decryption
Function

cleartext cleartextciphertext

secret key same secret key

Copyright © 2025 David B. JohnsonCOMP 321 Page 4

Public Key (Asymmetric) Encryption
Each process/user has two separate keys
• Public key: Can (and should) be freely disclosed and shared with anyone
• Private key: Must be kept private to only this one process/user
• Note: a “private” key is very different than a “secret” key

The two keys (public and private) must be generated together
• Important mathematical properties must hold between them
• After generating the pair of keys, you can then use either as your public key

and the other as your private key
• Must then use them consistently (e.g., can’t change public key to private)

Example: RSA algorithm

3

4

3

Copyright © 2025 David B. JohnsonCOMP 321 Page 5

Public Key (Asymmetric) Encryption
A different key is used for encryption than for decryption
• The functions need not be secret, and public keys should not be secret,

but private keys must be!
• Anyone can encrypt it but only the intended receiver can decrypt it
• Encryption and decryption functions are much (!!) slower than with secret key

‒ Don’t use it if you don’t have to (and not for more bits than you have to!)

Encryption
Function

Decryption
Function

cleartext cleartextciphertext

receiver’s public key receiver’s private key

Copyright © 2025 David B. JohnsonCOMP 321 Page 6

Managing Public Keys
Must be known by “anyone”
• Ask them for their public key / they tell you their public key
• Or, e.g., they publish their public key somewhere like on the web
• But how do you know it is the real public key for that real receiver?

Encryption
Function

Decryption
Function

attacker’s public key
(thinks it is receiver’s)

receiver’s
private key

Decryption
Function

Encryption
Function

man-in-the-middle attacker

real receiver’s
public key

attacker’s
private key

5

6

4

Copyright © 2025 David B. JohnsonCOMP 321 Page 7

Authentication Using Encryption
The general procedure
• Sender encrypts the message (or part of it)
• Receiver decrypts the message – if it decrypts “correctly”, it must be valid

Some things to be careful of
• Any string of bits can be “decrypted” with any key
• Receiver must be able distinguish from random bits in order to know they

decrypted “correctly”
• Simple example: include a random number in two places in the message

‒ Inside the encrypted part and outside (still cleartext)
• Also need encryption function to not allow “cut-and-paste” of parts of

encrypted text

Copyright © 2025 David B. JohnsonCOMP 321 Page 8

Authentication Using Secret Key Encryption
Just like use in providing confidentiality
• If message decrypts “correctly”, you know it was sent by someone with key
• Example: with just a single sender and single receiver, if it wasn’t sent by me,

I know it was sent by you

Encryption
Function

Decryption
Function

cleartext cleartextciphertext

secret key same secret key

7

8

5

Copyright © 2025 David B. JohnsonCOMP 321 Page 9

Authentication Using Public Key Encryption
Key use is reversed from use in providing confidentiality
• Encrypting using sender’s private key means only sender could have sent it
• Decrypting using sender’s public key means anyone can check the

authentication on the message received

Encryption
Function

Decryption
Function

cleartext cleartextciphertext

sender’s private key sender’s public key

Copyright © 2025 David B. JohnsonCOMP 321 Page 10

Secure Cryptographic One-Way Hash Functions
Like “regular” hash function (fixed-sized output), with cryptographic properties
• Easy to compute the hash of some given message x = H(x)
• Very hard (“impossible”) to reverse

‒ Find original x given H(x), or
‒ Find another message y ≠ x for which H(y) = H(x)

• Also called a message digest function

Examples
• Encrypt a constant string (e.g., all 0’s) using x as the key: H(x) = Ex(constant)
• Specialized functions such as MD5 (128 bits), SHA-1 (160 bits), SHA-2 many

variants (e.g., 256 or 512 bits), SHA-3 many variants (e.g., 256 or 512 bits)

9

10

6

Copyright © 2025 David B. JohnsonCOMP 321 Page 11

Authentication Using a Secure Hash Function
Uses a secret key shared between sender and receiver
• Like symmetric encryption, but no actual information hiding

‒ Faster to compute, and legal to use everywhere
• Sender computes the hash H(cleartext, secret key) – e.g., HMAC()

‒ Sends cleartext and the hash value
• Receiver checks hash of

received cleartext
‒ If it matches received hash value,

the message could only have been
sent by someone knowing the
secret key

Hash
Function

cleartext H(cleartext, key)

secret key

Copyright © 2025 David B. JohnsonCOMP 321 Page 12

Secure Hash Function: One-Time Passwords
Every time you log in, you must use a different password than the last time
• Uses of some secure cryptographic one-way hash function H()
• Initializing the password

‒ Generate x1 = H(R) for R = some initial value like a large random #
‒ Generate x2 = H(x1) = H(H(R)) = H2(R)
‒ Generate x100 = H(x99) = H(H(… H(R) …)) = H100(R)
‒ Store x100 in the password file

• Logging in
‒ The user types their “current” password, which must be x99
‒ The system computes H(provided password)
‒ If it matches, success: store x99 instead in the password file, and user then

must use x98 next time they log in

. . .

11

12

7

Copyright © 2025 David B. JohnsonCOMP 321 Page 13

Public Key Certificates
Allows you to get someone’s public key and confirm it is really theirs

A public key certificate is a statement of
• Someone’s identity
• Their public key
• And a signature from a “trusted” authority attesting that it is real

The “trusted” authority is called a Certificate Authority (CA)
• The President of Rice University? Or the Rice Registrar?
• In practice, a CA is a company in the business of being a CA
• For the web, the recognized CA public keys are built into the browser

Copyright © 2025 David B. JohnsonCOMP 321 Page 14

A Simplified Example of Public Key Certificates
A public key certificate for some user A, signed by Certificate Authority C
• x = (“C”, “A”, KA Public)
• A simple public key certificate using x

‒ Certificate = EC Private(x, rand#), “C”, same rand#
• A much more efficient way to create (and be able to check) the certificate

‒ Certificate = EC Private(H(x, rand#)), x, same rand#
‒ Uses secure cryptographic one-way hash function H()
‒ The asymmetric encryption of H(x, rand#) using C Private covers far fewer

bytes and so is much more efficient than encrypting the full x and rand#
‒ Now need to also include the full x in the certificate, not just “C”, since

decryption only reveals H(x, rand#) and cannot recover the actual x

– That is, x = “C says A’s public key is KA Public”

13

14

8

Copyright © 2025 David B. JohnsonCOMP 321 Page 15

The Importance of Public Key Certificates
Never use a public key alone – always use a public key certificate

A public key certificate (rather than just a pubic key) allows you confirm that
the public key is the real public key for the real user
• Any use of just a public key by itself can never be secure
• Anybody could have substituted a “fake” public key for that user
• Creates the “illusion of security” with no actual, real security
• Widely publishing the public key (e.g., on the web) helps in enabling a fake key

to be detected, but it doesn’t help in proving anything about the key

Never use a public key alone – always use and check a public key certificate
from a trusted Certificate Authority

15

