Introduction to
Cryptographic-Based Security

COMP 321

Dave Johnson

% RICE

COMP 321 Copyright © 2025 David B. Johnson Page 1

What is Cryptography?

Mathematical techniques for securing information and communications
* From Greek, meaning essentially “secret writing”

—Thus, transforming data into a form such that unintended recipients
cannot understand it

* Encryption is turning the original data (called cleartext) into encrypted data
(called ciphertext)

* Decryption is the reverse: turning the ciphertext into the original cleartext
* This service is confidentiality

But cryptography is more than just providing confidentiality

COMP 321 Copyright © 2025 David B. Johnson Page 2

Secret Key (Symmetric) Encryption

The same key is used for encryption and for decryption

* The encryption and decryption function both take a key as input to
parameterize the function

* The functions need not be secret, but the key must be!
* Examples: DES, AES, IDEA, Blowfish, Twofish, ...

cleartext | Encryption | ciphertext | Decryption | cleartext

 ———— —
Function Function
secret key same secret key

COMP 321 Copyright © 2025 David B. Johnson Page 3

Public Key (Asymmetric) Encryption

Each process/user has two separate keys

* Public key: Can (and should) be freely disclosed and shared with anyone
* Private key: Must be kept private to only this one process/user

* Note: a “private” key is very different than a “secret” key

The two keys (public and private) must be generated together
* Important mathematical properties must hold between them

* After generating the pair of keys, you can then use either as your public key
and the other as your private key

* Must then use them consistently (e.g., can’t change public key to private)
Example: RSA algorithm

COMP 321 Copyright © 2025 David B. Johnson Page 4

Public Key (Asymmetric) Encryption

A different key is used for encryption than for decryption

* The functions need not be secret, and public keys should not be secret,
but private keys must be!

* Anyone can encrypt it but only the intended receiver can decrypt it
* Encryption and decryption functions are much (!!) slower than with secret key
—Don’t use it if you don’t have to (and not for more bits than you have to!)

cleartext | Encryption | Ciphertext | Decryption | cleartext

—_— — >
Function Function
receiver’s public key receiver’s private key
COMP 321 Copyright © 2025 David B. Johnson Page 5

Managing Public Keys

Must be known by “anyone”

* Ask them for their public key / they tell you their public key

* Or, e.g., they publish their public key somewhere like on the web

* But how do you know it is the real public key for that real receiver?

man-in-the-middle attacker

1

i :

! 1
E tion : Decryption Encryption ' Decryption

, ncryp. . VIO. > VIO. L, VIO. ,
Function ! Function Function | Function
! |
1
ISR S

attacker’s public key attacker’s real receiver’s receiver’s
(thinks it is receiver’s) private key public key private key

COMP 321 Copyright © 2025 David B. Johnson Page 6

Authentication Using Encryption

The general procedure
* Sender encrypts the message (or part of it)
* Receiver decrypts the message — if it decrypts “correctly”, it must be valid

Some things to be careful of
* Any string of bits can be “decrypted” with any key

* Receiver must be able distinguish from random bits in order to know they
decrypted “correctly”

* Simple example: include a random number in two places in the message
—Inside the encrypted part and outside (still cleartext)

* Also need encryption function to not allow “cut-and-paste” of parts of
encrypted text

COMP 321 Copyright © 2025 David B. Johnson Page 7

Authentication Using Secret Key Encryption

Just like use in providing confidentiality
* |If message decrypts “correctly”, you know it was sent by someone with key

* Example: with just a single sender and single receiver, if it wasn’t sent by me,
| know it was sent by you

cleartext | Encryption | Ciphertext | pecryption | cleartext
—_— > — >

Function Function

| T

secret key same secret key

COMP 321 Copyright © 2025 David B. Johnson Page 8

Authentication Using Public Key Encryption

Key use is reversed from use in providing confidentiality
* Encrypting using sender’s private key means only sender could have sent it

* Decrypting using sender’s public key means anyone can check the
authentication on the message received

cleartext | Encryption | Ciphertext | pecryption | cleartext

—_— — >
Function Function
sender’s private key sender’s public key

COMP 321 Copyright © 2025 David B. Johnson Page 9

Secure Cryptographic One-Way Hash Functions

Like “regular” hash function (fixed-sized output), with cryptographic properties
* Easy to compute the hash of some given message x = H(x)
* Very hard (“impossible”) to reverse
- Find original x given H(x), or
— Find another message y # x for which H(y) = H(x)
* Also called a message digest function

Examples
* Encrypt a constant string (e.g., all 0’s) using x as the key: H(x) = E,(constant)

* Specialized functions such as MD5 (128 bits), SHA-1 (160 bits), SHA-2 many
variants (e.g., 256 or 512 bits), SHA-3 many variants (e.g., 256 or 512 bits)

COMP 321 Copyright © 2025 David B. Johnson Page 10

10

Authentication Using a Secure Hash Function

Uses a secret key shared between sender and receiver

* Like symmetric encryption, but no actual information hiding
— Faster to compute, and legal to use everywhere

* Sender computes the hash H(cleartext, secret key) — e.g., HMAC()
— Sends cleartext and the hash value

* Rece.iver checks hash of cleartext Uoah H(cleartext, key)
received cleartext — . —>
i) Function
—If it matches received hash value,
the message could only have been T
sent by someone knowing the
secret key secret key

COMP 321 Copyright © 2025 David B. Johnson Page 11

11

Secure Hash Function: One-Time Passwords

Every time you log in, you must use a different password than the last time
* Uses of some secure cryptographic one-way hash function H()
* Initializing the password
- Generate x; = H(R) for R = some initial value like a large random #
— Generate x, = H(x;) = H(H(R)) = H%(R)
— Generate xg = H(Xgg) = H(H(... H(R) ...)) = H1O9(R)
- Store Xy in the password file
* Logging in
—The user types their “current” password, which must be xgq
—The system computes H(provided password)

- If it matches, success: store xqq instead in the password file, and user then
must use xqg next time they log in

COMP 321 Copyright © 2025 David B. Johnson Page 12

12

Public Key Certificates
Allows you to get someone’s public key and confirm it is really theirs

A public key certificate is a statement of
* Someone’s identity

* Their public key
* And a signature from a “trusted” authority attesting that it is real

The “trusted” authority is called a Certificate Authority (CA)

* The President of Rice University? Or the Rice Registrar?

* In practice, a CA is a company in the business of being a CA

* For the web, the recognized CA public keys are built into the browser

COMP 321 Copyright © 2025 David B. Johnson Page 13

13

A Simplified Example of Public Key Certificates

A public key certificate for some user A, signed by Certificate Authority C
* x=(“C", “A", Kp puplic) — Thatis, x=“Csays A’s public key is Ky ppiic”
* A simple public key certificate using x
— Certificate = E¢ pyjyatelX, rand#), “C”, same rand#
* A much more efficient way to create (and be able to check) the certificate
— Certificate = E¢ pyjyate(H(X, rand#)), x, same rand#
— Uses secure cryptographic one-way hash function H()

—The asymmetric encryption of H(x, rand#) using C Private covers far fewer
bytes and so is much more efficient than encrypting the full x and rand#

— Now need to also include the full x in the certificate, not just “C”, since
decryption only reveals H(x, rand#) and cannot recover the actual x

COMP 321 Copyright © 2025 David B. Johnson Page 14

14

The Importance of Public Key Certificates
Never use a public key alone — always use a public key certificate

A public key certificate (rather than just a pubic key) allows you confirm that
the public key is the real public key for the real user

* Any use of just a public key by itself can never be secure

* Anybody could have substituted a “fake” public key for that user

* Creates the “illusion of security” with no actual, real security

* Widely publishing the public key (e.g., on the web) helps in enabling a fake key
to be detected, but it doesn’t help in proving anything about the key

Never use a public key alone — always use and check a public key certificate
from a trusted Certificate Authority

COMP 321 Copyright © 2025 David B. Johnson Page 15

15

