
Lecture 4:  Affine Transformations

   for Satan himself is transformed into an angel of light. 2 Corinthians 11:14

1. Transformations

Transformations are the lifeblood of geometry.  Euclidean geometry is based on rigid motions 
-- translation and rotation -- transformations that preserve distances and angles.  Congruent 
triangles are triangles where corresponding lengths and angles match.

The turtle uses translation (FORWARD), rotation (TURN), and uniform scaling (RESIZE) to 
move about on the plane.  The turtle can also apply translation (SHIFT), rotation (SPIN), and 
scaling (SCALE) to generate new shapes from previously defined turtle programs.  These three 
transformations -- translation, rotation and uniform scaling -- are called conformal transformations.  
Conformal transformations preserve angles, but not distances.  Similar triangles are triangles where 
corresponding angles agree, but the lengths of corresponding sides are scaled.  The ability to scale 
is what allows the turtle to generate self-similar fractals like the Sierpinski gasket.

In Computer Graphics transformations are employed to position, orient, and scale objects as 
well as to model shape.  Much of elementary Computational Geometry and Computer Graphics is 
based upon an understanding of the effects of different transformations.

The transformations that appear most often in 2-dimensional Computer Graphics are the affine 
transformations.  Affine transformations are composites of four basic types of transformations:  
translation, rotation, scaling (uniform and non-uniform), and shear.  Affine transformations do not 
necessarily preserve either distances or angles, but affine transformations map straight lines to 
straight lines and affine transformations preserve ratios of distances along straight lines.  For 
example, affine transformations map midpoints to midpoints.  In this lecture we are going to 
develop explicit formulas for various affine transformations;  in the next lecture we will use these 
affine transformations as an alternative to turtle programs to model shapes for Computer Graphics.

2. Conformal Transformations

Among the most important affine transformations are the conformal transformations:  
translation, rotation, and uniform scaling.  We shall begin our study of affine transformations by 
developing explicit formulas for these conformal transformations.

To fix our notation, we will use upper case letters   

€ 

P,Q,R,K  from the middle of the alphabet to 
denote points and lower case letters   

€ 

u,v, w,K  from the end of the alphabet to denote vectors.  Lower 



case letters with subscripts will denote rectangular coordinates.  Thus, for example, we shall write 

€ 

P = (p1, p2)  to denote that 

€ 

(p1, p2)  are the rectangular coordinates of the point P.  Similarly, we 
shall write 

€ 

v = (v1,v2) to denote that 

€ 

(v1,v2)  are the rectangular coordinates of the vector v. 

2.1 Translation.  We have already encountered translation in our study of turtle graphics (see 
Figure 1).  To translate a point 

€ 

P = (p1, p2)  by a vector 

€ 

w = (w1,w2), we set

€ 

Pnew = P + w (1)
or in terms of coordinates

  

€ 

p1
new = p1 + w1

p2
new = p2 + w2 .

Vectors are unaffected by translation, so

€ 

v new = v .
We can rewrite these equations in matrix form.  Let I denote the 

€ 

2 × 2 identity matrix;  then

€ 

Pnew = P ∗ I + w

v new = v ∗ I.

€ 

•

€ 

P€ 

v

€ 

•

€ 

Pnew
€ 

vnew

€ 

w
€ 

w

Figure 1:  Translation.  Points are affected by translation;  vectors are not affected by translation.

2.2 Rotation.  We also encountered rotation in turtle graphics.  Recall from Lecture 1 that to 
rotate a vector 

€ 

v = (v1,v2) through an angle 

€ 

θ , we introduce the orthogonal vector 

€ 

v⊥ = (−v2,v1) 
and set 

€ 

v new = cos(θ)v + sin(θ)v⊥

or equivalently in terms of coordinates

€ 

v1
new = v1 cos(θ) − v2 sin(θ)

v2
new = v1 sin(θ) + v2 cos(θ) .

(2)

Introducing the rotation matrix

€ 

Rot(θ) =
cos(θ) sin(θ)
− sin(θ) cos(θ)
 

 
 

 

 
 ,

we can rewrite Equation (2) in matrix form as

€ 

v new = v ∗Rot(θ) . (3)
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In our study of affine geometry in the plane, we want to rotate not only vectors, but also points 
about other points.  Since 

€ 

P = Q + (P −Q) , rotating a point P about another point Q through the 
angle 

€ 

θ  is equivalent to rotating the vector 

€ 

P −Q  through the angle 

€ 

θ  and then adding the resulting 
vector to Q (see Figure 2).  Thus by Equation (3) the formula for rotating a point P about another 
point Q through the angle 

€ 

θ  is 

€ 

Pnew = Q+ (P −Q)∗Rot (θ) = P∗Rot (θ) + Q∗ I − Rot(θ)( ) , (4)

where I is again the 

€ 

2 × 2 identity matrix.  Notice that if Q is the origin, then this formula reduces to

€ 

Pnew = P ∗Rot(θ),
so 

€ 

Rot(θ)  is also the matrix representing rotation of points about the origin.

€ 

•

€ 

Q

€ 

•
€ 

•

€ 

P
€ 

Pnew

€ 

P−Q

€ 

θ

€ 

(P −Q)new

Figure 2:  Rotation about the point Q.  Since the point Q is fixed and since 

€ 

P = Q + (P −Q) , 
rotating a point P about the point Q through the angle 

€ 

θ  is equivalent to rotating the vector 

€ 

P −Q  
through the angle 

€ 

θ  and then adding the resulting vector to Q.

2.3 Uniform Scaling.  Uniform scaling also appears in turtle graphics.  To scale a vector 

€ 

v = (v1,v2) by a factor s, we simply set

€ 

v new = sv (5)
or in terms of coordinates

€ 

v1
new = sv1

v2
new = sv2 .

 

Introducing the scaling matrix

€ 

Scale(s) =
s 0
0 s
 

 
 

 

 
 ,

we can rewrite Equation (5) in matrix form as

€ 

v new = v ∗ Scale(s) .
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Again, in affine geometry we want not only to scale vectors, but also to scale uniformly the 
distance of points from a fixed point.  Since 

€ 

P = Q + (P −Q) , scaling the distance of an arbitrary 
point P from a fixed point Q by the factor s is equivalent to scaling the length of the vector 

€ 

P −Q  
by the factor s and then adding the resulting vector to Q (see Figure 3).  Thus the formula for 
scaling the distance of an arbitrary point P from a fixed point Q by the factor s is 

€ 

Pnew = Q+ (P −Q)∗ Scale(s) = P ∗ Scale(s) + Q∗ I − Scale(s)( ) . (6)

Notice that if Q is the origin, then this formula reduces to

€ 

Pnew = P ∗ Scale(s) ,
so 

€ 

Scale(s)  is also the matrix that represents scaling the distance of points from the origin.

€ 

•

€ 

Q

€ 

•

€ 

•

€ 

P

€ 

Pnew

€ 

P −Q

€ 

(P −Q)new

 

 

€

 

{

Figure 3:  Uniform scaling about a fixed point Q.  Since the point Q is fixed and since 

€ 

P = Q + (P −Q) , scaling the distance of a point P from the point Q by the factor s is equivalent to 
scaling the vector 

€ 

P −Q  by the factor s and then adding the resulting vector to Q.

3. General Affine Transformations

The three conformal transformations -- translation, rotation, and uniform scaling -- all have the 
following form:  there exists a matrix M and a vector w such that

€ 

v new = v ∗M

Pnew = P ∗M + w .
(7)

In fact, this form characterizes all affine transformations.  That is, a transformation is said to be 
affine if and only if there is a matrix M and a vector w so that Equation (7) is satisfied.

The matrix M represents a linear transformation on vectors.  Recall that a transformation L on 
vectors is linear if

€ 

L(u + v) = L(u) + L(v)
L(cv) = cL(v) . (8)

Matrix multiplication represents a linear transformation because matrix multiplication distributes 
through vector addition and commutes with scalar multiplication -- that is,
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€ 

(u + v) ∗M = u ∗M + v ∗M
(cv) ∗M = c(v∗ M).

The vector w in Equation (7) represents translation on the points.  Thus an affine 
transformation can always be decomposed into a linear transformation followed by a translation.  
Notice that translation is not a linear transformation, since translation does not satisfy Equation (8);  
therefore translation cannot be represented by 

€ 

2 × 2 matrix multiplication.

Affine transformations can also be characterized abstractly in a manner similar to linear 
transformations.  A transformation A is said to be affine if A maps points to points, A maps vectors 
to vectors, and

€ 

A(u + v) = A(u) + A(v)
A(cv) = c A(v)
A(P + v) = A(P) + A(v) .

(9)

The first two equalities in Equation (9) say that an affine transformation is a linear transformation 
on vectors;  the third equality says that affine transformations are well behaved with respect to the 
addition of points and vectors.  It is easy to check that translation is an affine transformation.  

In terms of coordinates, linear transformations can be written as

€ 

x new = a x + b y

y new = c x + d y
  

€ 

⇔   (xnew, ynew ) = (x, y) ∗
a c
b d
 

 
 

 

 
 

whereas affine transformations have the form

€ 

x new = a x + b y + e

y new = c x + d y + f
  

€ 

⇔   (xnew, ynew ) = (x, y) ∗
a c
b d
 

 
 

 

 
 + (e, f )  .  

There is also a geometric way to characterize affine transformations.  Affine transformations 
map lines to lines (or if the transformation is degenerate a line can get mapped to a single point).  
For suppose that L is the line determined by the point P and the direction vector v.  Then the point 
Q lies on the line L if and only if there is a constant 

€ 

λ  such that

€ 

Q = P + λv  
If A is an affine transformation, then by Equation (9)

€ 

A(Q) = A(P + λv) = A(P) + λA(v).
Therefore the point 

€ 

A(Q) lies on the line 

€ 

A(L)  determined by the point 

€ 

A(P) and the vector 

€ 

A(v) .  
(If 

€ 

A(v) = 0, then the transformation A is degenerate and 

€ 

A(L)  collapses to a single point.)  
Moreover, suppose Q is a point on the line segment 

€ 

PR  that splits 

€ 

PR  into two segments in the 
ratio 

€ 

a / b .  If A is an affine transformation, then 

€ 

A(Q) splits the line segment 

€ 

A(P)A(R)  into two 
segments in the same ratio 

€ 

a / b  -- that is, affine transformations preserves ratios of distances along 
straight lines (see Figure 4).  We can prove this result in the following fashion.  Since Q lies along 
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the line 

€ 

PR

€ 

| Q − P |
| R− P |

=
a

a + b
 ⇔  Q = P +

a
a + b

(R− P) .

Similarly, since 

€ 

A(Q) lies along the line 

€ 

A(P)A(R) ,

€ 

| A(Q) − A(P) |
| A(R) − A(P) |

=
′ a 

′ a + ′ b 
⇔ A(Q) = A(P) +

′ a 
′ a + ′ b 

A(R)− A(P)( )

But by Equation (9)

€ 

Q = P +
a

a + b
(R − P)⇒ A(Q) = A(P ) +

a
a + b

A(R − P) = A(P) +
a

a + b
A(R) − A(P)( ) .

Therefore,

€ 

′ a 
′ a + ′ b 

=
a

a + b
 ,

so 

€ 

A(Q) splits the line segment

€ 

A(P)A(R)  into two segments in the same ratio that Q split the line 
segment 

€ 

PR .

€ 

A(P)

€ 

A(Q)
€ 

A(R)

€ 

•

€ 

•

€ 

•

€ 

′ a 

€ 

P

€ 

Q
€ 

R

€ 

•

€ 

•

€ 

•

€ 

a

€ 

b

€ 

′ b 

€ 

A

Figure 4:  Affine transformations map straight lines to straight lines and preserve ratios of 

distances along straight lines.  Thus 

€ 

′ a 
′ a + ′ b 

=
a

a + b
.

 

Linear transformations are typically represented by matrices because composing two linear 
transformations is equivalent to multiplying the corresponding matrices.  We would like to have the 
same facility with affine transformations -- that is, we would like to be able to compose two affine 
transformations by multiplying their matrix representations.  Unfortunately, our current 
representation of an affine transformation in terms of a linear transformation matrix M and a 
translation vector w does not work so well when we want to compose two affine transformations.  
In order to overcome this difficulty, we shall now introduce a clever device called affine coordinates.

3.1 Affine Coordinates.  Points and vectors are both represented by pairs of rectangular 
coordinates, but points and vectors are different types of objects with different behaviors for the 
same affine transformations.  For example, points are affected by translation, but vectors are not.  
We are now going to introduce a third coordinate -- an affine coordinate -- to distinguish between 
points and vectors.  Affine coordinates will also allow us to represent each affine transformation 
using a single 

€ 

3× 3 matrix and to compose any two affine transformations by matrix multiplication.
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Since points are affected by translation and vectors are not, the affine coordinate for a point is 

€ 

1;  the affine coordinate for a vector is 

€ 

0.  Thus, from now on, we shall write 

€ 

P = (p1, p2,1)  for 
points and 

€ 

v = (v1,v2,0) for vectors.  

Affine transformations can now be represented by 

€ 

3× 3 matrices, where the third column is 
always 

€ 

(0 0 1)T .  The affine transformation

€ 

v new = v ∗M

Pnew = P ∗M + w .

represented by the 

€ 

2 × 2 matrix M and the translation vector w can be rewritten using affine 
coordinates in terms of a single 

€ 

3× 3 matrix 

€ 

˜ M =
M 0
w 1
 

 
 

 

 
 .

Now

€ 

(vnew, 0) = (v, 0) ∗ ˜ M = (v, 0) ∗
M 0
w 1
 

 
 

 

 
 = (v∗ M, 0)

(P new,1) = (P, 1) ∗ ˜ M = (P, 1)∗
M 0
w 1
 

 
 

 

 
 = (P∗ M + w, 1).

Notice how the affine coordinate -- 0 for vectors and 1 for points -- is correctly reproduced by 
multiplication with the last column of the matrix 

€ 

˜ M .  Notice too that the 0 in the third coordinate for 
vectors effectively insures that vectors ignore the translation represented by the vector w.

Below we rewrite the standard conformal transformations -- translation, rotation, and uniform 
scaling -- in terms of 

€ 

3× 3 affine matrices.

Translation -- by the vector 

€ 

w = (w1,w2)

€ 

Trans(w) =
I 0
w 1
 

 
 

 

 
 =

1 0 0
0 1 0

w1 w2 1

 

 

 
  

 

 

 
  

Rotation -- around the Origin through the angle 

€ 

θ

€ 

Rot(θ, Origin) =
Rot(θ) 0

0 1
 

 
 

 

 
 =

cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1
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Rotation -- around the point 

€ 

Q = (q1,q2)  through the angle 

€ 

θ

€ 

Rot(Q,θ) =
Rot (θ) 0

Q∗ I − Rot(θ)( ) 1
 

 
 

 

 
 =

cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

q1 1− cos(θ)( ) + q2 sin(θ) −q1sin(θ) + q2 1−cos(θ)( ) 1

 

 

 
 
 

 

 

 
 
 

Uniform Scaling -- around the Origin by the factor s

€ 

Scale(Origin,s) =
s I 0
0 1
 

 
 

 

 
 =

s 0 0
0 s 0
0 0 1

 

 

 
  

 

 

 
  

Uniform Scaling -- around the point 

€ 

Q = (q1,q2)  by the factor s

€ 

Scale(Q, s) =
s I 0

Q∗(1− s)I 1
 

 
 

 

 
 =

s 0 0
0 s 0

(1− s)q1 (1− s)q2 1

 

 

 
  

 

 

 
  

3.2 Image of One Point and Two Vectors.  Fix a point Q and two linearly independent vectors 

€ 

u,v .  Since the vectors 

€ 

u,v  form a basis, for any vector w there are scalars 

€ 

σ,τ  such that

€ 

w =σ u + τ v .
Hence for any point P, there are scalars 

€ 

s,t  such that

€ 

P −Q = su + t v
or equivalently

€ 

P = Q + su + t v
Therefore if A is an affine transformation, then by Equation (9)

€ 

A(P) = A(Q) + sA(u) + t A(v )
A(w) =σ A(u) + τ A(v)  . (10)

Thus if we know the effect of the transformation A on one point Q and on two linearly independent 
vectors 

€ 

u,v,  then we know the affect of A on every point P and every vector w.  Hence, in addition 
to conformal transformations, there is another important way to define affine transformations of the 
plane:  by specifying the image of one point and two linearly independent vectors.

Geometrically, Equation (10) says that an affine transformation A maps the parallelogram 
determined by the point Q and the vectors 

€ 

u,v  into the parallelogram determined by the point 

€ 

A(Q) 
and the vectors 

€ 

A(u),A(v ) (see Figure 5).  Thus affine transformations map parallelograms into 
parallelograms.
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•

• •

€ 

Q € 

t v

€ 

su

•

€ 

P

€ 

u

€ 

v
€ 

w

•

•

•

€ 

A(Q)

€ 

A(v)

€ 

A(u)

€ 

s A(u)
€ 

A(P)

€ 

t A(v)

•

€ 

A(w)

€ 

A

Figure 5:  Affine transformations map parallelograms to parallelograms.

 To find the 

€ 

3× 3 matrix representation M of such an affine transformation A, let 

€ 

Q∗,u∗,v∗  be 
the images of 

€ 

Q,u,v  under the transformation A.  Then using affine coordinates, we have

€ 

(u∗ ,0) = (u,0) ∗M

€ 

(v∗,0) = (v,0) ∗M

€ 

(Q∗ ,1) = (Q,1) ∗M
where

€ 

M =

a c 0
b d 0
e f 1

 

 

 
  

 

 

 
  
 .

Thus

  

€ 

u∗ 0
v∗ 0
Q∗ 1

 

 

 
 
 

 

 

 
 
 

Snew
1 2 4 3 4 

=

u 0
v 0
Q 1

 

 

 
  

 

 

 
  

Sold
1 2 3 

∗

a c 0
b d 0
e f 1

 

 

 
  

 

 

 
  

M
1 2 4 3 4 

 .

Solving for M yields

€ 

M = Sold
−1 ∗ Snew  

or equivalently

€ 

M =

u 0
v 0
Q 1

 

 

 
  

 

 

 
  

−1

∗  
u∗ 0
v∗ 0
Q∗ 1

 

 

 
 
 

 

 

 
 
 

=

u1 u2 0
v1 v2 0
q1 q2 1

 

 

 
  

 

 

 
  

−1

∗  
u1
∗ u2

∗ 0
v1
∗ v2

∗ 0
q1
∗ q2

∗ 1

 

 

 
 
 

 

 

 
 
 
 .

To compute M explicitly, we need to invert a 

€ 

3× 3 matrix.  For nonsingular 

€ 

3× 3 matrices N 

there is a slick way to find 

€ 

N−1.  Suppose that 

€ 

N =

A
B
C

 

 

 
  

 

 

 
  

=

a1 a2 a3
b1 b2 b3
c1 c2 c3

 

 

 
  

 

 

 
  
 ;
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then

€ 

N−1 =
B ×C C × A A × B( )

Det( N)
,

where 

€ 

×  denotes cross product.  This result is easily verified using the standard properties of the 
cross product, which we shall review in Lecture 9.

3.3 Non-Uniform Scaling.  Uniform scaling scales distances by the same amount in all 
directions;  non-uniform scaling scales distances by different amounts in different directions.  We 
are interested in non-uniform scaling for many reasons.  For example, we can apply non-uniform 
scaling to generate an ellipse by scaling a circle from its center along a fixed direction (see Figure 
6).  To scale the distance from a fixed point Q along an arbitrary direction w by a scale factor s, we 
can apply our method for generating arbitrary affine transformations by specifying the image of 
one point and two linearly independent vectors (see Figure 7).

  
Figure 6:  Scaling a circle from its center along a fixed direction generates an ellipse.

€ 

Q
€ 

w

€ 

•

€ 

w⊥

€ 

Q

€ 

• € 

s w€ 

w⊥

Figure 7:  Scaling from the fixed point Q in the direction w by the scale factor s.  The point Q is 

fixed, the vector w is scaled by s, and the orthogonal vector 

€ 

w⊥  remains fixed.  Thus non-uniform 
scaling maps a square into a rectangle.

Let 

€ 

Scale(Q,w,s)  denote the transformation that scales the distance from a fixed point Q along 
an arbitrary direction w by a scale factor s.  To find the 

€ 

3× 3 matrix that represents the 
transformation 

€ 

Scale(Q,w,s) , we need to know the image of one point and two linearly independent 
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vectors.  Consider the point 

€ 

Q  and the vectors w and 

€ 

w⊥ , where 

€ 

w⊥  is a vector of the same length 

as w perpendicular to w.  It is easy to see how the transformation 

€ 

Scale(Q,w,s)  affects  

€ 

Q,  w,  w⊥ :
•

€ 

Q→Q   because Q is a fixed point of the transformation;
•

€ 

w → sw  because distances are scaled by the factor s along the direction w;
•

€ 

w⊥ → w⊥  because distances along the vector 

€ 

w⊥  are not changed, since 

€ 

w⊥  is 
orthogonal to the scaling direction w.

Therefore by the results of the previous section:

€ 

Scale(Q,w,s) =

w 0
w⊥ 0
Q 1

 

 

 
  

 

 

 
  

−1

∗  
sw 0
w⊥ 0
Q 1

 

 

 
  

 

 

 
  
 .

Now recall that if 

€ 

w = (w1,w2), then 

€ 

w⊥ = (−w2,w1).  Therefore in terms of coordinates

€ 

Scale(Q,w,s) =

w1 w2 0
−w2 w1 0
q1 q2 1

 

 

 
  

 

 

 
  

−1

∗  
sw1 sw2 0
−w2 w1 0
q1 q2 1

 

 

 
  

 

 

 
  
 .

Notice, in particular, that if Q is the origin and w is the unit vector along the x-axis, then 

€ 

w⊥  is 
the unit vector along the y-axis, so

€ 

w1 w2 0
−w 2 w1 0
q1 q2 1

 

 

 
  

 

 

 
  

=

1 0 0
0 1 0
0 0 1

 

 

 
  

 

 

 
  

= Identity Matrix .

Therefore scaling along the x-axis is represented by the matrix

€ 

Scale(Origin,i,s) =

s 0 0
0 1 0
0 0 1

 

 

 
  

 

 

 
  
 .

Similarly, scaling along the y-axis is represented by the matrix

€ 

Scale(Origin, j,s) =

1 0 0
0 s 0
0 0 1

 

 

 
  

 

 

 
  
 .

3.4 Image of Three Non-Collinear Points.  If we know the image of three non-collinear points 
under an affine transformation, then we also know the image one point and two linearly independent 
vectors.  Indeed suppose that we know the image of the three non-collinear points 

€ 

P1,P2,P3 under 
the affine transformation A.  Then 

€ 

u = P2 − P1 and 

€ 

v = P3 − P1 are certainly linearly independent 
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vectors, and

€ 

A(u) = A(P2 − P1) = A(P2) − A(P1)

€ 

A(v) = A(P3 − P1) = A(P3) − A(P1)  .
Hence if we know the image of 

€ 

P1,P2,P3 under the affine transformation A, then we know the 
image of the point 

€ 

P1 and the linearly independent vectors 

€ 

u,v.   Therefore the image of three non-
collinear points specifies a unique affine transformation.  We are now going to study the geometry 
behind affine transformations defined by the image of three non-collinear points.  To assist our 
understanding, we shall introduce the notion of barycentric coordinates.

A point and two orthogonal unit vectors define a rectangular coordinate system.   Similarly, 
three non-collinear points define a barycentric coordinate system.  Suppose that 

€ 

P1,P2,P3 are three 
non-collinear points.  If P is any point in the plane, then there are unique scalars 

€ 

s,t  such that

€ 

P = P1 + s(P2 − P1) + t (P3 − P1)
or equivalently

€ 

P = (1− s− t) P1 + sP2 + t P3.
Let 

€ 

β1 =1− s − t , 

€ 

β2 = s , 

€ 

β3 = t .  Then

€ 

P = β1 P1 + β2 P2 + β3 P3 (10)
and

€ 

β1 + β2 + β3 =1 . (11)
The scalars 

€ 

β1,β2,β3 are called the barycentric coordinates of the point P relative to 

€ 

ΔP1P2P3.

Barycentric coordinates have a geometric interpretation in terms of ratios of areas.  In fact,

€ 

β1 = ±
Area(ΔPP2P3)
Area(ΔP1P2,P3)

 ,  

€ 

β2 = ±
Area(ΔPP3P1)

Area(ΔP1P2,P3)
,  

€ 

β3 = ±
Area(ΔPP1P2)

Area(ΔP1P2,P3)
(12) 

where the sign of the area depends on the location of P relative to 

€ 

ΔP1P2P3.  In particular, the signs 
are all positive if P lies inside of 

€ 

ΔP1P2P3 (see Figure 8).  

€ 

P1

€ 

P2

€ 

P3

€ 

•

€ 

P

€ 

•

€ 

•

€ 

•€ 

β1

€ 

β2

€ 

β3

Figure 8:  The barycentric coordinates 

€ 

β1,β2,β3 of the point P relative to.

€ 

ΔP1P2P3.
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To prove the results in Equation (12), observe that by Equations (10) and (11)

€ 

P =P1 + β2 (P2 − P1) + β3(P3 − P1)
or equivalently

€ 

P −P1 = β2 (P2 − P1) + β3(P3 − P1).
Crossing both sides with the vector 

€ 

P2 − P1 yields

€ 

(P −P1) × (P2 −P1) = β3(P3 − P1) × (P2 −P1).
Therefore taking the magnitude of both sides and solving for 

€ 

β3, we find that

€ 

|β3 |=
(P −P1) × (P2 −P1)
(P3 − P1) × (P2 −P1)

 .

But we shall show in Lecture 11 that for any triangle

€ 

Area(ΔPQR) =
(Q− P) × (R − P)

2
..

Hence

€ 

|β3 |= Area(ΔPP1P2)
Area(ΔP1P2,P3)

 .

Similar arguments give similar formulas for 

€ 

β1.and 

€ 

β2 .

Now let A be an affine transformation and let 

€ 

β1,β2,β3 be the barycentric coordinates of the 
point P relative to 

€ 

ΔP1P2P3.  Then

€ 

P = β1 P1 + β2 P2 + β3 P3
so

€ 

A(P) = β1 A(P1) + β2 A(P2) + β3 A(P3) .
Hence 

€ 

β1,β2,β3 are the barycentric coordinates of the point 

€ 

A(P) relative to 

€ 

ΔA(P1)A(P2)A(P3) .  
Therefore affine transformation preserve barycentric coordinates (see Figure 9).

€ 

P1

€ 

P2

€ 

P3

€ 

•

€ 

P

€ 

•

€ 

•

€ 

•€ 

β1

€ 

β2

€ 

β3

€ 

A(P1)

€ 

•

€ 

A(P)

€ 

•

€ 

•

€ 

•
€ 

β1

€ 

β2

€ 

β3€ 

A

€ 

A(P2)

€ 

A(P3)

Figure 9:  The image of three non-collinear points specifies a unique affine transformation that 
preserves barycentric coordinates.
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 To find the 

€ 

3× 3 matrix M that represents an affine transformation A defined by the image of 

three non-collinear points, we can proceed as in Section 3.2.  Let 

€ 

P1
∗,P2

∗,P3
∗  be the images of the 

points 

€ 

P1,P2,P3 under the transformation A.  Using affine coordinates, we have

€ 

(P1
∗ ,1) = (P1,1)∗ M

€ 

(P2
∗ ,1) = (P2,1) ∗M

€ 

(P3
∗ ,1) = (P3,1)∗ M

where

€ 

M =

a c 0
b d 0
e f 1

 

 

 
  

 

 

 
  
 .

Thus

  

€ 

P1
∗ 1

P2
∗ 1

P3
∗ 1

 

 

 
 
 

 

 

 
 
 

Pnew
1 2 4 3 4 

=

P1 1
P2 1
P3 1

 

 

 
  

 

 

 
  

Pold
1 2 3 

∗

a c 0
b d 0
e f 1

 

 

 
  

 

 

 
  

M
1 2 4 3 4 

 .

Solving for M yields

€ 

M = Pold
−1 ∗Pnew  

or equivalently if 

€ 

Pk = (xk ,yk )  and 

€ 

Pk
∗ = (xk

∗, yk
∗) for 

€ 

k =1,2,3, then

€ 

M =

P1 1
P2 1
P3 1

 

 

 
  

 

 

 
  

−1

∗  
P1
∗ 1

P2
∗ 1

P3
∗ 1

 

 

 
 
 

 

 

 
 
 

=

x1 y1 1
x2 y2 1
x3 y3 1

 

 

 
  

 

 

 
  

−1

∗  
x1
∗ y1

∗ 1
x2
∗ y2

∗ 1
x3
∗ y3

∗ 1

 

 

 
 
 

 

 

 
 
 
 .

Notice the similarity to the matrix expression in Section 3.2 for the affine transformation defined by 
the image of one point and two linearly independent vectors.  The only differences are the ones 
appearing in the first two rows of the third columns, indicating that two vectors have been replaced 
by two points.

4. Summary

Below is a summary of the main high level concepts that you need to remember from this 
lecture.  Also listed below for your convenience are all the 

€ 

3× 3 matrices representing affine 
transformations that we have derived in this lecture.

4.1  Affine Transformations and Affine Coordinates.  Affine transformations are the 
fundamental transformations of 2-dimensional Computer Graphics.  There are several different 
ways of characterizing affine transformations:
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1. A transformation A is affine if there exists a 

€ 

2 × 2 matrix M and a vector w such that

€ 

A(v) = v∗ M
A(P) = P∗ M + w .

2. A transformation A is affine if there is a 

€ 

3× 3 matrix M such that

€ 

A(v),0( ) = (v, 0)∗ M
A(P),1( ) = (P,1)∗ M

3. A transformation A is affine if

€ 

A(u + v) = A(u) + A(v)
A(cv) = c A(v)
A(P + v) = A(P) + A(v) .

4. A transformation A is affine if A preserves ratios of distances along straight lines.

Affine transformations include the standard conformal transformations -- translation, rotation, 
and uniform scaling -- of turtle graphics, but they also incorporate other transformations such as 
non-uniform scaling.  Every affine transformations can be specified either by the image of one 
point and two linearly independent vectors or by the image of three non-collinear points.

Affine coordinates are used to distinguish between points and vectors.  The affine coordinate 
of a point is 1;  the affine coordinate of a vector is 0.  Affine coordinates can be applied to represent 
all affine transformations by 

€ 

3× 3 matrices of the form, 

€ 

˜ M =
M 0
w 1
 

 
 

 

 
 ,

so that

€ 

(vnew, 0) = (v,0) ∗M

(P new,1) = (P,1) ∗M .
These matrix representations allow us to compose affine transformations using matrix 
multiplication.

Finally a word of caution.  We use matrices to represent transformations, but matrices are not 
the same things as transformations.  Matrix representations for affine transformations are akin to 
coordinate representations for points and vectors -- that is, a low level computational tool for 
communicating efficiently with a computer.  Matrices are the assembly language of 
transformations.  As usual, we do not want to think or write programs in an assembly language;  
we want to work in a high level language.  In the next lecture, we shall introduce a high level 
language for 2-dimensional Computer Graphics based on affine transformations.  You will code the 
matrices for these transformations only once, but you will use the corresponding high level 
transformations many, many times.
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4.2 Matrices for Affine Transformations in the Plane

Translation -- by the vector 

€ 

w = (w1,w2)

€ 

Trans(w) =
I 0
w 1
 

 
 

 

 
 =

1 0 0
0 1 0

w1 w2 1

 

 

 
  

 

 

 
  

Rotation -- around the Origin through the angle 

€ 

θ

€ 

Rot(θ, Origin) =
Rot(θ) 0

0 1
 

 
 

 

 
 =

cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 

 

 
  

 

 

 
  

Rotation -- around the point 

€ 

Q = (q1,q2)  through the angle 

€ 

θ

€ 

Rot(Q,θ) =
Rot (θ) 0

Q∗ I − Rot(θ)( ) 1
 

 
 

 

 
 =

cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

q1 1− cos(θ)( ) + q2 sin(θ) −q1sin(θ) + q2 1−cos(θ)( ) 1

 

 

 
 
 

 

 

 
 
 

Uniform Scaling -- around the Origin by the factor s

€ 

Scale(Origin,s) =
s I 0
0 1
 

 
 

 

 
 =

s 0 0
0 s 0
0 0 1

 

 

 
  

 

 

 
  

Uniform Scaling -- around the point 

€ 

Q = (q1,q2)  by the factor s

€ 

Scale(Q, s) =
s I 0

Q∗(1− s)I 1
 

 
 

 

 
 =

s 0 0
0 s 0

(1− s)q1 (1− s)q2 1

 

 

 
  

 

 

 
  

Non-Uniform Scaling -- around point 

€ 

Q = (q1,q2)  in direction 

€ 

w = (w1,w2)  by the factor s

€ 

Scale(Q,w,s) =

w1 w2 0
−w2 w1 0
q1 q2 1

 

 

 
  

 

 

 
  

−1

∗  
sw1 sw2 0
−w2 w1 0
q1 q2 1

 

 

 
  

 

 

 
  
.

Scaling from the Origin along the x-axis by the factor s

€ 

Scale(Origin,i,s) =

s 0 0
0 1 0
0 0 1

 

 

 
  

 

 

 
  
 .
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Scaling from the Origin along the y-axis by the factor s

€ 

Scale(Origin, j,s) =

1 0 0
0 s 0
0 0 1

 

 

 
  

 

 

 
  
 .

Image of One Point 

€ 

Q = (x3,y3)  and Two Vectors 

€ 

v1 = (x1,y1) , 

€ 

v2 = (x2,y2)

€ 

Image(v1,v2,Q) =

x1 y1 0
x2 y2 0
x3 y3 1

 

 

 
  

 

 

 
  

−1

∗  
x1
∗ y1

∗ 0
x2
∗ y2

∗ 0
x3
∗ y3

∗ 1

 

 

 
 
 

 

 

 
 
 
 .

Image of Three Non-Collinear Points 

€ 

P1 = (x1,y1) , 

€ 

P2 = (x2,y2) , 

€ 

P3 = (x3,y3)

€ 

Image(P1,P2,P3) =

x1 y1 1
x2 y2 1
x3 y3 1

 

 

 
  

 

 

 
  

−1

∗  
x1
∗ y1

∗ 1
x2
∗ y2

∗ 1
x3
∗ y3

∗ 1

 

 

 
 
 

 

 

 
 
 

Inverse of a 

€ 

3× 3  Matrix 

€ 

N = A B C( )T

€ 

N−1 =
B ×C C × A A × B( )

Det( N)

Exercises

1. Show that translation is not a linear transformation, but is an affine transformation on points.

2. Show that the formula for scaling a point P around a point Q by a scale factor s is equivalent to

€ 

Pnew = (1− s)Q + sP .

3. Let 

€ 

wQ denote the vector from the point Q to the origin.
a. Without appealing to coordinates and without explicitly multiplying matrices, show that:

i.

€ 

Rot(Q,θ) = Trans(−wQ) ∗Rot(θ) ∗Trans(wQ )

ii.

€ 

Scale(Q,s) = Trans(−wQ) ∗ Scale(s)∗Trans(wQ )
b. Give a geometric interpretation for the results in part a.

4. Let 

€ 

wQ denote the vector from the point Q to the origin, let i denote the unit vector along the x-
axis, and let 

€ 

α  denote the angle between the vectors w and i.  
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a. Without appealing to coordinates and without explicitly multiplying matrices, show that:

€ 

Scale(Q,w,s) = Trans(−wQ) ∗Rot(−α) ∗ Scale(Origin, i, s)∗Rot(α) ∗Trans(wQ)
b. Give a geometric interpretation for the result in part a.

5. Show that rotation and scaling about a fixed point commute.  That is, show that 

€ 

Rot(Q,θ)∗ Scale(Q,s) = Scale(Q,s)∗Rot (Q,θ) .

6. Verify that if 

€ 

w = (w1,w2), then 

€ 

w⊥ = (−w2,w1) by invoking the formula

€ 

w⊥ = w ∗Rot(π / 2) .

7. What is the geometric effect of the transformation matrix:

€ 

w 0
w⊥ 0
Q 1

 

 

 
  

 

 

 
  

−1

∗  
sw 0

t w⊥ 0
Q 1

 

 

 
  

 

 

 
  
 .

8. Show that when affine transformations are represented by 

€ 

3× 3 matrices, composition of affine 
transformations is equivalent to matrix multiplication.

9. Let A be an affine transformation.  Using Equation (9) show that for all points 

€ 

P,Q

€ 

A(Q − P) = A(Q) − A(P) .

10.  Let A be an affine transformation and let 

€ 

β1,β2,β3 be the barycentric coordinates of the point P  
relative to 

€ 

ΔP1P2P3.  Using Equation (9) show that

€ 

A(P) = β1 A(P1) + β2 A(P2) + β3 A(P3) .

11. Show that:
a. the composite of two affine transformations is an affine transformation;
b. the inverse of a nonsingular affine transformation is an affine transformation.

Conclude that the nonsingular affine transformations form a group.

12. Let 

€ 

M,N  be two matrices whose third column is 

€ 

(0 0 1)T .  Show that:
a. the third column of 

€ 

M ∗N  is 

€ 

(0 0 1)T ;
b. the third column of 

€ 

M−1 is 

€ 

(0 0 1)T .
Conclude that the nonsingular affine transformation matrices form a group.

13. Show that every conformal transformation is determined by:
a. the image of one point and one vector.
b. the image of two points.
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14. Show that if M is a conformal transformation, then 

€ 

ScaleFactor(M) = det(M) .

15. a. Show that an affine transformation is determined by the image of two points and one 
vector that is not parallel to the line determined by the two points.

b. Let 

€ 

P1
∗,P2

∗,v∗  be the images of 

€ 

P1,P2,v  under the affine transformation A.  Find the  

€ 

3× 3 matrix M that represents the affine transformation A.

16. Let M be the 

€ 

3× 3 matrix corresponding to the affine transformation A.  Show that

€ 

M =

A(i) 0
A( j) 0

A(Origin) 1

 

 

 
  

 

 

 
  
 .

17. Shear is the affine transformation defined by mapping a unit square with vertex Q and sides 

€ 

w,w⊥  into a parallelogram by tilting the edge 

€ 

w⊥  so that 

€ 

wnew
⊥  makes an angle of 

€ 

θ  with 

€ 

w⊥  (see 
Figure 10).  Show that:

a.

€ 

Shear(Q,w,w⊥,θ) =

w 0
w⊥ 0
Q 1

 

 

 
  

 

 

 
  

−1

∗  
w 0

tan(θ)w + w⊥ 0
Q 1

 

 

 
  

 

 

 
  
 .

b.

€ 

Shear(Origin,i, j,θ) =

1 0 0
tan(θ) 1 0

0 0 1

 

 

 
  

 

 

 
  
 .

c.

€ 

det Shear(Q,w,w⊥,θ)( ) =1 .

d. Shear preserves area.

€ 

Q

€ 

•

€ 

w€ 

w⊥

€ 

Q

€ 

•

€ 

w
€ 

w⊥

€ 

θ

€ 

wnew
⊥

Figure 10:  Shear maps the rectangle with vertex Q and sides 

€ 

w,w⊥  into a parallelogram by tilting 
the edge 

€ 

w⊥  so that 

€ 

wnew
⊥  makes an angle of 

€ 

θ  with 

€ 

w⊥ .
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