
Lecture 21: Bezier Approximation and de Casteljau’s Algorithm

and thou shalt be near unto me Genesis 45:10

1. Introduction

In Lecture 20, we used interpolation to specify shape. But interpolation is not always a good
way to describe the contour of a curve or surface. To accurately reproduce complicated shapes, we
may need to interpolate lots of data. Polynomial interpolation for many points is impractical
because the degree of the interpolant can get extremely high leading to slow and numerically
unstable computations. Also polynomial interpolants may oscillate unnecessarily and fail to
reproduce the desired shapes (see Figure 1). Thus, even if we were to specify more and more
points, there is no guarantee that the polynomial interpolants would converge to the curves or
surfaces we wish to represent.

Data Polynomial Interpolant
Figure 1: Lagrange interpolation. Notice the oscillations in the interpolating polynomial curve,
even though there is no oscillation in the original data points.

Spline interpolation -- that is, interpolation by piecewise polynomial functions -- is better
computationally because splines allow us to keep the degree low. But interpolating splines may still
oscillate unnecessarily and fail to reproduce the desired shapes. Our approach here is rather to
abandon interpolation altogether and to take a very different approach to describing the shape of a
curve or surface.

Given a relatively small collection of points in affine space, we are going to investigate methods
for generating polynomial curves and surfaces that approximate the shape described by these
points. We shall not insist that our curves and surfaces go through these points, but we shall insist
that these curves and surfaces come near to the points and capture in some mathematically precise
way the shape defined by these points. As usual we begin with schemes for curves and later extend
our techniques to surfaces.

2. De Casteljau’s Algorithm

Let us return for a moment to where we began our investigation of polynomial curves and
surfaces: Lagrange interpolation and Neville’s algorithm. Recall that Neville’s algorithm
(Figure 2) is a dynamic programming procedure for computing points along a polynomial
interpolant. We are going to start our investigation of approximation schemes by using the same
basic triangular structure but simplifying the computations along the edges.

The simplest thing -- one might almost say the only thing -- we know how to do is linear
interpolation. All our interpolation procedures, and especially Neville’s algorithm, are based on this
simple idea or some variant thereof. What makes Neville’s algorithm the least bit complicated is
that we perform a different linear interpolation at each node of the diagram. To take the same
triangular structure and make the evaluation algorithm as easy as possible, we will perform the same
linear interpolation at each node. This idea generates the algorithm represented in Figure 3.

t1 − t

t2 − t

t3 − t

P0 P1 P2 P3

P01(t)

t − t0

t − t0

P12(t)

t − t1

t − t2t2 − t t − t1 t3 − t

P23(t)

P012(t) P123(t)

P0123(t)

t − t0 t3 − t

 Figure 2: Neville’s algorithm (unnormalized) for cubic polynomial interpolation.

0 1
2

B(t)
b − t

b − t

b − t
∇ ∇ ∇

t − a

t − a

t − a
P0 P1 P2 P3

t − a b − t t − a b − t

t − a b − t

♦ ♦

Figure 3: The de Casteljau algorithm for a cubic Bezier curve B(t) in the interval [a, b]. The label
on every edge must be normalized by dividing by b − a , so that the labels along arrows entering
each node sum to one.

 2

This algorithm represented in Figure 3 is called de Casteljau’s evaluation algorithm, and the
curves that emerge at the apex of this diagram are called Bezier curves. Intermediate nodes marked
∇ and ♦ also represent Bezier curves, but of lower degree. Thus the de Casteljau algorithm is a
dynamic programming algorithm for computing points on a Bezier curve. Typically, for reasons
that will become clear in the next section, Bezier curves are restricted to the interval [a, b]. Usually,
for simplicity, we take a = 0 and b = 1, but there are cases, as we shall see later on, where it is
useful to allow a and b to be arbitrary as long as b > a . Notice that when a = 0 and b = 1, no
normalization is required.

The de Casteljau algorithm has the following elegant geometric interpretation. Since each node
represents a linear interpolation, each node symbolizes a point on the line segment joining the two
points whose arrows point into the node. Drawing all these line segments generates the trellis in
Figure 4.

∇

♦

•
• •

•

b – t t
–
a

P0

P1 P2

P3

t − a

b − t

t − a

t − a

b − t

b − t

∇

∇

∇

♦
♦b − t

t − a
b − tb − t

t − a
t − a B(t)

• •

••

Figure 4: Geometric construction algorithm for a point on a cubic Bezier curve based on a
geometric interpretation of the de Casteljau evaluation algorithm. At the parameter t, each line
segment in the trellis is split in the ratio (t − a)/(b − t).

We are going to study the geometric characteristics of curves generated by de Casteljau’s
algorithm. We begin with some simple features; in subsequent lectures we will develop some more
advanced mathematical properties of this approximation scheme.

3. Elementary Properties of Bezier Curves

Bezier curves have the following elementary properties:
1. Polynomial Parametrization
2. Affine Invariance
3. Convex Hull
4. Symmetry
5. Interpolation of End Points

 3

Below we briefly discuss and derive each of these properties in turn, and we explain as well why
these features are important for computer graphics.

Most of these properties can be proved by direct observation or by easy inductive arguments
using the de Casteljau algorithm. To set up these inductive arguments, let B[P0,..., Pn](t) denote the
Bezier curve over the interval [a, b] with affine control points P0,..., Pn . Then the last stage of the
de Casteljau algorithm can be written as

B[P0,..., Pn](t) =
b − t
b − a

B[P0,..., Pn−1](t) +
t − a
b − a

B[P1,..., Pn](t) . (3.1)

We are now ready to proceed with our derivations.

1. Polynomial Parametrization
In the de Casteljau algorithm, the only operations we perform involving the functions along the

edges are addition and multiplication (see Figure 3). Since the functions along the edges are linear
polynomials, it follows that a Bezier curve with n +1 control points is a polynomial curve of degree
n because there are n levels from the control points at the base to the curve at the apex of the
triangle. (This result also follows by an easy induction from Equation (3.1)). Since Bezier curves
are polynomial curves, all the tools we know for polynomials apply.

2. Affine Invariance
A curve is said to be affinely invariant if it consists of a collection of points in affine space.

Equivalently, a curve scheme is said to be affinely invariant if applying an affine transformation to
the control points transforms every point on the curve by the same affine transformation. Affine
invariance is an easy consequence of the de Casteljau algorithm. since by linear interpolation every
node in the algorithm is affinely invariant (see Figures 5,6). (This result also follows by an easy
induction from Equation (3.1)).

Affine invariance is a crucial feature for any curve scheme because it asserts that the curve is
independent of the choice of the coordinate system. This property is essential for a good
approximation scheme, since in a typical geometric model many different coordinate systems are
present. Affine invariance guarantees that the curve will be the same no matter which coordinate
system is invoked.

 4

0 1
2

B(t) + v

b − t

b − t

b − t

∇+ v
∇+ v ∇+ v

t − a

t − a

t − a
P0 + v P1 + v P2 + v P3 + v

t − a b − t t − a b − t

t − a b − t

♦+v ♦+v

Figure 5: Translation invariance. Translating each control point by a vector v translates every
point on the curve by the same vector v.

0 1
2

€

B(t),1()∗M

b − t

b − t

b − t
€

(∇,1)∗M

t − a

t − a

t − a

€

(P0,1)∗M

t − a b − t t − a b − t

t − a b − t
€

(♦,1)∗M

€

(P1,1)∗M

€

(P2,1)∗M

€

(P3,1)∗M€

(∇,1)∗M

€

(∇,1)∗M€

(♦,1)∗M

Figure 6: Affine invariance. Transforming each control point by an affine map M transforms
every point on the curve by the same affine map M.

3. Convex Hull Property
A set S of points in affine space is said to be convex if whenever P and Q are points in S the

entire line segment from P to Q lies in S (see Figure 7). The intersection S of a collection of convex
sets {Si} is a convex set because if P and Q are points in S, they must also be points in each of the
sets Si . Since, by assumption, the sets Si are convex, the entire line segment from P to Q lies in
each set Si . Hence the entire line segment from P to Q lies in the intersection S, so S too is convex.

The convex hull of a collection of points in affine space is the intersection of all the convex sets
containing the points. Since the intersection of convex sets is a convex set, the convex hull is the
smallest convex set containing the points. For two points, the convex hull is the line segment

 5

joining the points. For three non-collinear points, the convex hull is the triangle whose vertices are
the three points. The convex hull of a finite collections of points in the plane can be found
mechanically by placing a nail at each point, stretching a rubber band so that its interior contains all
the nails, and then releasing the rubber band. When the rubber band comes to rest on the nails, the
interior of the rubber band is the convex hull of the points.

P Q
P

• •
• • Q

 (a) Convex Set (b) Non-Convex Set

Figure 7: In a convex set (a) the line segment joining any two points in the set lies entirely within
the set. In a non-convex set (b) part of the line segment joining two points in the set may lie outside
the set.

Since the convex hull of two points is the line segment joining the two points,
ConvexHull{P0, P1} = {c0P0 + c1P1 | c0 + c1 = 1 and c0,c1 ≥ 0} .

More generally it follows by a simple inductive argument (see Exercise 1) that

ConvexHull{P0,..., Pn} = { ck Pk | ck = 1 and ck ≥ 0
k =0

n
∑

k= 0

n
∑ } .

Bezier curves always lie in the convex hull of their control points. That is,
B[P0,..., Pn](t) ⊆ ConvexHull{P0,..., Pn} .

Again we can prove this assertion by a simple inductive argument. First recall that, by convention,
we always restrict the Bezier curve B[P0,..., Pn](t) in (3.1) to the parameter interval a ≤ t ≤ b . With
this restriction, the convex hull property is certainly true for a Bezier curve with only two control
points since, by construction, this curve is the line segment joining the two control points. More
generally suppose that this result is valid for Bezier curves with n control points. By (3.1),
B[P0,..., Pn](t) lies on the line segment joining the points B[P0,..., Pn−1](t) and B[P1,..., Pn](t) , and
by the inductive hypothesis B[P0,..., Pn−1](t) and B[P1,..., Pn](t) both lie in the convex hull of the
points P0,..., Pn . But if two points lie in a convex set, the entire line segment joining them also lies
in the set; thus the entire Bezier curve B[P0,..., Pn](t), a ≤ t ≤ b , must lie in ConvexHull{P0,..., Pn}

 6

. The convex hull property is important because it constrains Bezier curves to lie in the proximity
of their control points. This property is a vital feature for an approximation scheme. Scientists
and engineers not only require curves that approximate the shape defined by their control points,
they also demand curves that lie in the same region of space as their control points. To be useful in
computer graphics, the curves must be visible on the graphics terminal. The convex hull property
guarantees that if all the control points are visible on the graphics terminal, then the entire curve is
visible as well. The restriction a ≤ t ≤ b on the parameter t is there precisely to guarantee the
convex hull property.

4. Symmetry
Replacing t by a + b − t reverses the order of the parameter domain. As the parameter t varies

from a to b, the curve B[P0,..., Pn](a + b − t) traverses the same points as B[P0,..., Pn](t) but in the
direction from b to a rather than from a to b. Thus B[P0,..., Pn](a + b − t) is essentially the same
curve as B[P0,..., Pn](t) but with opposite orientation. Similarly, reversing the order of the control
points of a Bezier curve generates the same Bezier curve but with opposite orientation. Analytically
this means that,

B[Pn , ..., P0](t) = B[P0,..., Pn](a + b − t) a ≤ t ≤ b . (3.2)
This symmetry property is what professional engineers and most naive users would naturally
expect of a simple approximation scheme, so it is gratifying to see that it holds for all Bezier curves.

To prove (3.2), simply replace t by a + b − t in the de Casteljau diagram and observe that the
new diagram is the mirror image of the de Casteljau diagram for B[Pn , ..., P0](t) (see Figure 8).

0 1
2

B(t)
b − t

b − t

b − t

∇ ∇ ∇

t − a

t − a

t − a
P0 P1 P2 P3

t − a b − tt − ab − t

t − a b − t

♦ ♦

Figure 8: The de Casteljau algorithm for B[P0,..., Pn](a + b − t). Compare to Figure 3 with the
control points in reverse order.

 7

5. Interpolation of End Points
Unlike Lagrange polynomials, Bezier curves generally do not interpolate all their control

points. But Bezier curves always interpolate their first and last control points. In fact,
B[P0,..., Pn](a) = P0
B[P0,..., Pn](b) = Pn .

The first result follow easily from setting t = a in de Casteljau’s algorithm and observing that all
the labels on left pointing arrows become zero while all the labels on right pointing arrows become
one. If k ≠ 0 , then any path from Pk to the apex of the triangle must traverse at least one left
pointing arrow, so there is no contribution from Pk to the value of the curve at t = a . On the other
hand, when t = a all the labels on the single path from P0 to the apex of the triangle are one.
Hence B[P0,..., Pn](a) = P0. A similar argument for t = b shows that B[P0,..., Pn](b) = Pn . Again
an easy inductive argument based on (3.1) yields the same results.

Interpolating end points is important because we often want to connect two curves. To assure
that two Bezier curves join at their end points, all we need to do is to make sure that the first control
point of the second curve is the same as the last control point of the first curve. This device insures
continuity. In the next section, we shall develop techniques for guaranteeing higher order
smoothness between adjacent Bezier curves, but before we can perform this analysis we need to
know how to differentiate Bezier curves.

4. Differentiation Algorithm for Bezier Curves

To compute the derivative of a Bezier curve, we need to differentiate the de Casteljau algorithm.
Differentiating the de Casteljau algorithm for a degree n Bezier curve is actually quite easy: simply
differentiate the labels -- that is, replace

€

1− t →−1 and

€

t →1 -- on any level of the de Casteljau
algorithm and multiply the output by n (see Figure 9).

We shall defer the proof of this differentiation algorithm for Bezier curves till Lecture 23. In
this section we will study the consequences of this differentiation algorithm.

There are several things to notice about Figure 9. First, by running only the lowest level of the
differentiation algorithm, we see that, up to a constant multiple, we can think of the derivative of a
cubic Bezier curve with control points {Pk} as a quadratic Bezier polynomial with control vectors
{Pk+1 − Pk} (see Figure 10).

 8

0 1
2

′ B (t) = 3× _

−1

∇ ∇ ∇

P0 P1 P2 P3

♦ ♦
1− t

1− t

1− t

1

t

t

t

11−1 −1

Figure 9: Computing the first derivative of a cubic Bezier curve with control points P0,P1, P2,P3
by differentiating the labels on the bottom level of the de Casteljau algorithm. To get the correct
derivative

€

′ B (t), we must multiply the output of this algorithm by n = 3.

′ B (t) = 3× _

♦ ♦
1− t

1− t

1− tt

t

t

€

P1 − P0

€

P2 − P1

€

P3 −P2

Figure 10: The derivative of a cubic Bezier curve with control points {Pk} is, up to a constant
multiple, a quadratic Bezier polynomial with control vectors {Pk+1 − Pk} .

In general, up to a constant multiple, the derivative of a Bezier curve with control points {Pk} is
a Bezier polynomial of one lower degree with control vectors {Pk+1 − Pk}. Therefore, by induction,
we can express the kth derivative of a degree n Bezier curve as a Bezier polynomial of degree

€

n − k .
Moreover, to compute the kth derivative of a Bezier curve, we can differentiate the labels on any k

levels the de Casteljau algorithm and multiply the output by

€

n!
(n − k)!

 (see Figure 11).

 9

0 1
2

′ ′ B (t) = 6× _

−1

∇ ∇ ∇

P0 P1 P2 P3

♦ ♦

1− t

1

1

t

1

11−1 −1

−1
−1

Figure 11: Computing the second derivative of a cubic Bezier curve with control points
P0,P1, P2,P3 by differentiating the labels on the bottom two levels of the de Casteljau algorithm.
Here to get the correct second derivative

€

′ B (t), we must multiply the output of this algorithm by

€

6.

We prefaced our discussion of differentiation by saying that we wanted to be able to join two
Bezier curves together smoothly. To do so, we need to calculate derivatives at their end points. Let

€

B(t) be a Bezier curve with control points

€

P0,K,Pn . Substituting

€

t = 0 or

€

t =1 into the
differentiation algorithm, we see that:

€

B(0) = P0

€

B(1) = Pn

€

′ B (0) = n(P1 − P0)

€

′ B (1) = n(Pn − Pn−1)

€

′ ′ B (0) = n(n −1)(P2 − 2P1 + P0)

€

′ ′ B (1) = n(n −1)(Pn −2Pn−1 + Pn−2)
In general, it follows by induction on k that the kth derivative at

€

t = 0 depends only on the first

€

k +1
control points, and the kth derivative at

€

t =1 depends only on the last

€

k +1 control points.

Suppose then that we are given a Bezier curve with control points

€

P0,K,Pn and we want to
construct another Bezier curve with control points

€

Q0,K,Qn that meets the first curve and matches
its first r derivatives at its end point. From the results in the previous paragraph, we find that the
control points

€

Q0,K,Qn must satisfy the following constraints:
r = 0 : Q0 = Pn
r = 1: Q1 −Q0 = Pn − Pn−1 ⇒ Q1 = Pn + (Pn − Pn−1)
r = 2 : Q2 − 2Q1 + Q0 = Pn − 2Pn−1 + Pn−2 ⇒ Q2 = Pn−2 + 4(Pn − Pn−1)

and so on for higher values of r. Each additional derivative allows us to solve for one additional
control point. Clearly we could go on in this manner solving for one point at a time. An alternative
approach that avoids all this tedious computation will be presented in Lecture 22.

 10

5. Tensor Product Bezier Surfaces

A tensor product Bezier patch is a rectangular surface patch generated by a rectangular array
of control points. Connecting control points with adjacent indices by straight lines generates a
control polyhedron that controls the shape of the Bezier patch in much the same way that the Bezier
control polygon controls the shape of a Bezier curve (see Figures 12 and 13). In particular,
dragging a control point pulls the surface patch in the same general direction as the control point.

€

s = a

€

s = b

€

t = c

€

t = d

P00 P10 P20 P30

P01 P11 P21 P31

P02 P12 P22 P32

P03 P13 P23 P33

 (a) Domain -- Rectangle (b) Range -- Rectangular Array of Points
Figure 12: Data for a bicubic tensor product Bezier patch. Notice that the domain is simply a
rectangle and that, unlike Lagrange interpolation, the domain has no nodes and no grid. Compare to
Figure 8 in Lecture 20.

Figure 13: A bicubic tensor product Bezier surface with its control polyhedron, formed by
connecting control points with adjacent indices. The control points are the same as those for the
Lagrange surface in Figure 10 of Lecture 20.

To construct a tensor product Bezier patch

€

B(s,t) from a rectangular array of control points
{Pij}, we proceed in a manner similar to the construction of a tensor product Lagrange surface,

 11

except that Lagrange curves and Neville’s algorithm are replaced by Bezier curves and de
Casteljau’s algorithm. Let

€

Pi (t) = B[Pi ,0,K,Pi,n](t)

€

i = 0,K,m , (4.1)

be the Bezier curve for the control points

€

Pi ,0,K,Pi,n . For each fixed value of t, let

€

B(s,t) = B[P0(t),K, Pm(t)](s) (4.2)
be the Bezier curve for the control points

€

P0(t),K, Pm(t). Then as s varies from

€

a to

€

b and t varies
from

€

c to

€

d , the curves

€

B(s,t) sweep out a surface (see Figures 14,15). This surface is called a
tensor product Bezier patch.

Equations (4.1), (4.2) and Figures 14,15 suggest the following evaluation algorithm for tensor
product Bezier patches: first use de Casteljau’s algorithm m +1 times to compute the points at the
parameter t along the degree n Bezier curves P0(t), ..., Pm(t) ; then use de Casteljau’s algorithm one
more time to compute the point at the parameter s along the degree m Bezier curve with control
points P0(t), ..., Pm(t) (see Figure 16).

•

•

•

•
•

•

P03

P02

P01

P00

P0(t)

P13

P12

P11

P10

P3(t)

P23
P33

P22

P21

P20
P30

P31

P32
B(s, t) ••

•
P1(t) •

P2(t)

Figure 14: Construction of points on a bicubic tensor product Bezier surface B(s, t). First the
Bezier curves Pi (t), i = 0,..., 3 are constructed from the control points Pi0, Pi1, Pi2, Pi3. Then for a
fixed value of t, the Bezier curve B(s, t) is constructed using the points P0(t), P1(t), P2(t), P3(t) as
control points. In general, the Bezier surface B(s, t) does not interpolate its control points.
Compare to Figure 9 of Lecture 20 for bicubic Lagrange interpolation.

 12

Figure 15: The bicubic Bezier patch in Figure 13 along with its cubic Bezier control curves.
Notice that only the boundary control curves are interpolated by the surface. Compare to the tensor
product Lagrange surface in Figure 10 of Lecture 20.

*

*

*

*
*

*

*

*

P00 P01 P02 P10 P11 P12 P20 P21 P22

B(s,t)
1 − s s

ss1 − s 1 − s

P0(t) P1(t) P2(t)

1 − t

1 − t

1 − t

t

tt 1 − t

1 − t

1 − t tt

t

1 − t

1 − t

1 − t

t

tt

Figure 16: De Casteljau’s evaluation algorithm for a biquadratic Bezier patch. The three lower
triangles represent Bezier curves in the t direction, and the upper triangle blends these curves in the
s direction. Compare to Figure 11 of Lecture 20 -- Neville’s algorithm for a biquadratic Lagrange
interpolating patch.

 13

Alternatively, instead of starting with the Bezier curves

€

Pi (t) = B[Pi ,0,K,Pi,n](t)

€

i = 0,K,m ,
we could begin with the Bezier curves

€

Pj
*(s) = B[P0, j ,K,Pm, j](s)

€

j = 0,K,n ,

and for each fixed value of s let

€

B(s,t) = B[P0
*(s),K,Pn

*(s)](t)

be the Bezier curve for the control points

€

P0
*(s),K,Pn

*(s) . Again as s varies from a to b and t

varies from

€

c to

€

d , the curves

€

B(s,t) sweep out a surface. We shall show in a later lecture that this
surface is identical to the tensor product Bezier patch in our previous construction. Thus we have
the following alternative evaluation algorithm for tensor product Bezier patches: first use de
Casteljau’s algorithm

€

n +1 times to compute the points at the parameter s along the degree m

Bezier curves

€

P0
*(s), ...,Pn

*(s) ; then use de Casteljau’s algorithm one more time to compute the

point at the parameter t along the degree n Bezier curve with control points

€

P0
*(t),...,Pn

*(t) (see
Figure 17). When

€

m < n , then this algorithm is more efficient than the previous algorithm.

*
*

*

*
*

*

*

*

P00

€

P10

€

P20

€

P01 P11

€

P21

€

P02

€

P12 P22

B(s,t)

€

1− t

€

t

€

t

€

t

€

1− t

€

1− t

€

P0
*(s)

€

P1
*(s)

€

P2
*(s)

€

1− s€

1− s

€

1− s
€

s

€

s

€

s

€

1− s
€

1− s

€

1− s

€

s

€

s
€

s

€

1− s
€

1− s

€

1− s
€

s

€

s

€

s

Figure 17: An alternative version of the de Casteljau evaluation algorithm for a biquadratic Bezier
patch. The three lower triangles represent Bezier curves in the s direction, and the upper triangle
blends these curves in the t direction. Compare to Figure 16.

 14

Tensor product Bezier patches inherit many of the characteristic properties of Bezier curves:
they are affine invariant, lie in the convex hull of their control points, and interpolate their corner
control points (see Exercises 6-8). These properties follow easily from Figures 14,16 and the
corresponding properties of Bezier curves. Moreover the boundaries of a tensor product Bezier
patch are the Bezier curves determined by their boundary control points, since

€

B(0,t) = P0(t) = B[P0,0,K,P0,n](t)
B(1,t) = Pm(t) = B[Pm,0,K,Pm ,n](t)

and

€

B(s,0) = P0
*(s) = B[P0,0,K,Pm,0](t)

B(s,1) = Pn
*(s) = B[P0,n ,K,Pm,n](t).

It follows that although tensor product Bezier patches do not generally interpolate their control
points, they always interpolate the four corner points P00,Pm0, P0n ,Pmn.

To compute the partial derivatives of a Bezier patch, we can apply our procedure for
differentiating the de Casteljau algorithm for Bezier curves. Consider Figure 16. We can compute

€

∂B /∂t simply by differentiating the de Casteljau algorithm for each of the Bezier curves

€

P0(t),K, Pm(t) at the base of the diagram. Similarly, we can compute

€

∂B /∂s by differentiating
any one of the upper s levels of the diagram and multiplying the result by the degree in s (see
Figure 18). Symmetric results hold for differentiating the algorithm in Figure 17: simply reverse

the roles of s and t. The normal vector N to a Bezier patch is given by

€

N =
∂B
∂s
×
∂B
∂t

.

€

∂B
∂t

♦ ♦

€

1− s€

1− s

€

1− s

€

s €

s

€

s

€

′ P 0(t)

€

′ P 1(t)

€

′ P 2(t)

€

∂B
∂s

= 2× _

♦ ♦

€

−1€

1− s

€

−1

€

1 €

s

€

1

€

P0(t)

€

P1(t)

€

P2(t)

Figure 18: Computing the partial derivatives of a biquadratic Bezier patch by applying the
procedure for differentiating the de Casteljau algorithm for Bezier curves. To find

€

∂B /∂t (left)
simply differentiate the de Casteljau algorithm for each of the Bezier curves

€

P0(t), P1(t), P2(t). To
find

€

∂B /∂s (right) simply differentiate one level of the de Casteljau algorithm is s and multiply the
result by the degree in s.

 15

Exercises:

1. Let P0,..., Pn be a collection of points in an affine space. Prove that

ConvexHull{P0,..., Pn} = { ck Pk | ck = 1 and ck ≥ 0
k =0

n
∑

k= 0

n
∑ } .

2. Prove that B[P0,..., Pn](b) = Pn .

3. Show that Lagrange interpolating polynomial curves are affine invariant.

4. Give an example to show that a degree n Lagrange interpolating polynomial with nodes

 t0 < t1 < L < tn does not necessarily satisfy the convex hull property on the interval [t0,tn].

5. Give an example to show that Bezier curves do not necessarily reproduce polynomial curves.
That is, give an example to show that if there is a degree n polynomial

€

P(t) such that

€

Pk = P(tk),
then it does not necessarily follow that

€

B[P0,K,Pn](t) = P(t) .

6. Show that tensor product Bezier patches are affine invariant.

7. Show that every tensor product Bezier patch lies in the convex hull of its control points.

8. Show that every tensor product Bezier patch interpolates its corner control points.

9. Let

€

Pi , j ,

€

0 ≤ i ≤m, 0 ≤ j ≤ n , be a rectangular array of control points, and let

€

B[Pi, j](s,t),

€

0 ≤ s,t ≤1, denote the corresponding tensor product Bezier patch of bidegree (m, n) . Show that the
surface patch

€

B[Pi, j](s,t) has the following symmetry properties:

a.

€

B[Pj,i](t,s) = B[Pi, j](s,t) ;

b.

€

B[Pi,n− j](s,t) = B[Pi , j](s,1− t) ;

c.

€

B[Pm−i, j](s,t) = B[Pi , j](1− s,t) .

10. Let

€

Pi , j ,

€

0 ≤ i ≤m, 0 ≤ j ≤ n , be a rectangular array of control points, and let

€

Pi (t) = B[Pi ,0,K,Pi,n](t)

€

i = 0,K,m ,
be a sequence of Bezier curves. Show how to combine Neville’s algorithm and de Casteljau’s
algorithm to generate a surface C(s,t) that interpolates the curves

€

P0(t), ...,Pm(t) at the parameter
values

€

s0,...,sm .

 16

11. Given point and derivative data

€

(R0,v0),...,(Rn ,vn) , explain how to place Bezier control points

to generate a

€

C1 piecewise cubic curve to interpolate this data.

12. The formulas for the unit tangent U(t), the curvature K(t), and the torsion T (t) of a
parametric curve P(t) are given by

i. U(t) =
′ P (t)

| ′ P (t) |

ii. K(t) =
| ′ P (t) × ′ ′ P (t) |

| ′ P (t) |3

iii. T (t) =
′ P (t) • (′ ′ P (t) × ′ ′ ′ P (t))
| ′ P (t) × ′ ′ P (t) |2

a. Compute the unit tangent, curvature, and torsion of a Bezier curve at t = 0,1.
b. Find conditions on the control points of a Bezier curve C(t) so that it matches a given

Bezier curve B(t) with continuous unit tangent, curvature, and torsion.

 17

