
Lecture 25: Bezier Subdivision

And he took unto him all these, and divided them in the midst, and laid each piece one against
another: Genesis 15:10

1. Divide and Conquer

If we are going to build useful computer models of freeform shapes using Bezier curves and
surfaces, we need procedures to do more than simply evaluate points along these curves and
surfaces. We need algorithms to analyze their geometry. For example, to ray trace a Bezier patch,
we need algorithms both for finding surface normals and for computing ray-surface intersections.
In Lecture 24 we developed an algorithm for differentiating Bezier curves and surfaces, which
allows us to find the surface normal of a Bezier patch at any parameter value by taking the cross
product of the partial derivatives of the patch. Here we shall develop an algorithm that will permit
us to compute the intersection of an arbitrary ray with a Bezier patch.

The method we shall employ is a divide and conquer technique called Bezier subdivision. The
main idea behind Bezier subdivision is that although globally Bezier curves and surfaces represent
curved shapes, if we divide these curves and surfaces into a collection of small enough segments,
each segment will be almost flat. Flat shapes like lines and planes are simple to analyze. For
example, we can easily ray trace a planar polygon. Thus we shall analyze Bezier curves and
surfaces by dividing these curves and surfaces into lots of small flat segments, analyzing the
individual flat segments, and then recombining the results to build an understanding of the global
geometry of the entire curve or surface.

Bezier subdivision is a powerful tool with many applications. In this lecture we shall use
Bezier subdivision to develop fast, robust rendering and intersection algorithms for Bezier curves
and surfaces, We shall also use Bezier subdivision to prove the variation diminishing property for
Bezier curves and to show how to connect two Bezier curves smoothly at their join.

2. The de Casteljau Subdivision Algorithm

The control points of a Bezier curve describe a polynomial curve with respect to a fixed
parameter interval

€

[a,b]. Sometimes, however, we are interested only in the part of the polynomial
curve in a subinterval of

€

[a,b]. For example, when rendering a Bezier curve, we may need to clip
the curve to a window on the graphics terminal. Since any segment of a Bezier curve is itself a
polynomial curve, we should be able to represent each segment of a Bezier curve as a Bezier curve
with a new set of control points. Splitting a Bezier curve into smaller pieces is also useful as a
divide and conquer strategy for rendering and intersection algorithms. The process of splitting a

Bezier curve into two or more Bezier curves that represent the exact same curve is called Bezier
subdivision (see Figure 1)

Figure 1: Bezier subdivision for a cubic Bezier curve. The Bezier curve

€

P(t) with control points
P0,P1, P2,P3 is split into two Bezier curves: the left Bezier segment

€

Q(t) has control points

€

Q0,Q1,Q2,Q3; the right Bezier segment

€

R(t) has control points

€

R0,R1,R2,R3.

The basic problem in Bezier subdivision is: given a collection of control points

€

P0,K,Pn that
describe a Bezier curve over the interval

€

[a,b], find the control points

€

Q0,K,Qn and

€

R0,K,Rn that
describe the segments of the same Bezier curve over the intervals

€

[a,c] and

€

[c,b] . Remarkably the
solution to this problem is provided by the same de Casteljau algorithm that we use to evaluate
points on a Bezier curve.

The de Casteljau Subdivision Algorithm
Let

€

P(t) be a Bezier curve over the interval

€

[a,b] with control points P0,..., Pn . To subdivide

€

P(t) at

€

t = c , run the de Casteljau evaluation algorithm for

€

P(t) at

€

t = c . The points Q0,..., Qn that
emerge along the left lateral edge of the de Casteljau diagram are the Bezier control points for the
segment of the curve from

€

t = a to

€

t = c , and the points R0,..., Rn that emerge along the right lateral
edge of the de Casteljau diagram are the Bezier control points for the segment of the curve from

€

t = c to

€

t = b (see Figure 2).

Notice that when

€

c = (a + b) / 2 is the midpoint of the parameter interval

€

[a,b], then

€

(b −c) / (b − a) =1 / 2 = (c − a) / (b − a), so the labels along all the edges in the de Casteljau
subdivision algorithm evaluate to 1/2. Thus for midpoint subdivision the de Casteljau subdivision
algorithm is independent of the parameter interval (see Figure 3).

 2

0 1
2

€

Q3 = R0

€

b − c

€

b− c

€

b − c

€

Q1

€

∇

€

c − a

€

c − a

€

c − a

€

Q0 = P0

€

P1

€

P2

€

P3 = R3

€

c − a

€

b − c

€

c − a

€

b− c€

c − a

€

b − c

€

Q2

€

R2
€

R1

Figure 2: The de Casteljau subdivision algorithm for a cubic Bezier curve with control points
P0,P1, P2,P3. The points Q0,Q1,Q2,Q3 that emerge along the left edge of the triangle are the Bezier
control points for the segment of the original curve from

€

t = a to

€

t = c ; the points R0, R1, R2, R3
that emerge along the right edge of the triangle are the Bezier control points for the segment of the
original curve from

€

t = c to

€

t = b .

0 1
2

€

Q3 = R0

€

1 / 2

€

Q1

€

∇

€

Q0 = P0

€

P1

€

P2

€

P3 = R3

€

Q2

€

R2
€

R1

€

1 / 2
€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2

Figure 3: The de Casteljau subdivision algorithm for a cubic Bezier curve at the midpoint of the
parameter interval. The labels along all the edges evaluate to 1/2, so midpoint subdivision does not
depend on the choice of the parameter interval.

We shall defer the proof of the de Casteljau subdivision algorithm till Lecture 26. In this
lecture we will study the consequences of this subdivision algorithm. Figure 4 provides a geometric
interpretation for the de Casteljau subdivision algorithm.

 3

Figure 4: Geometric interpretation of the de Casteljau subdivision algorithm for a cubic Bezier
curve

€

P(t) with control points P0,P1, P2,P3. The points Q0,Q1,Q2,Q3 are the Bezier control points
of the segment of the original curve from

€

t = a to

€

t = c , and the points R0, R1, R2, R3 are the Bezier

control points of the segment of the original curve from

€

t = c to

€

t = b .

When we subdivide a Bezier curve, the new control polygons appear closer to the Bezier curve
than the initial control polygon (see Figures 1 and 4). Suppose we continue recursively subdividing
each Bezier segment. Then in the limit, these control polygons converge to a smooth curve (see
Figure 5). We shall now show that this limit curve is, in fact, the Bezier curve for the original
control polygon. For convenience, we will restrict our attention to recursive subdivision at the
midpoint of the parameter interval, though the results are much the same for any value that splits the
parameter intervals in a constant ratio,.

Figure 5: Control polygons converge to Bezier curves under recursive subdivision. Here the
original control polygons (left) and the first three levels of subdivision (right) are illustrated.

Theorem 1: The control polygons generated by recursive subdivision converge to the Bezier
curve for the original control polygon.
Proof: Suppose that the maximum distance between any two adjacent control points is d. By
construction, the points on any level of the de Casteljau algorithm evaluated at the midpoint of the
parameter domain lie at the midpoints of the edges of the polygons generated by the previous level
because the labels along all the edges evaluate to 1/2 (see Figure 3). Therefore it follows easily by

 4

induction that adjacent points on any level of the de Casteljau diagram are no further than d units
apart (see Figure 6).

Figure 6: One level of the de Casteljau algorithm for a cubic Bezier curve evaluated at the midpoint
of the parameter domain. If adjacent control points P0,P1, P2,P3 are no further than d units apart,
then adjacent points Q1,∇, R2 on the first level of the de Casteljau algorithm can also be no further
that d units apart.

By the same midpoint argument, as we proceed up the de Casteljau diagram adjacent points along
the left or right lateral edge of the triangle can be no further than d / 2 units apart. Hence as we
apply recursive subdivision, the distance between the control points of any single control polygon
must converge to zero. Since the first and last control points of a Bezier control polygon always lie
on the Bezier curve, these control polygons must converge to points along the Bezier curve for the
original control polygon.

We can also subdivide tensor product Bezier patches. Recall from Lecture 24 that a Bezier
surface

€

B(s,t) is defined by applying the de Casteljau algorithm in the parameter s to a collection of
control points defined by the Bezier curves

€

P0(t),K, Pm(t) in the parameter t. To subdivide the
Bezier patch along the parameter line

€

t = t0 , simply subdivide each of the curves

€

P0(t),K, Pm(t) at

€

t = t0 . Similarly, to subdivide the Bezier patch along a parameter line

€

s = s0 recall that the same
Bezier surface

€

B(s,t) is defined by applying the de Casteljau algorithm in the parameter t to a

collection of control points defined by the Bezier curves

€

P0
*(s),K,Pn

*(s) in the parameter s. Thus

to subdivide the Bezier patch along the parameter line

€

s = s0, simply subdivide each of the curves

€

P0
*(s),K,Pn

*(s) at

€

s = s0. Now we have the following result.

 5

Theorem 2: The control polyhedra generated by recursive subdivision converge to the tensor
product Bezier patch for the original control polyhedron provided that the subdivision is done in
both the s and t directions.

The proof of Theorem 2 for Bezier surfaces is much the same as the proof of Theorem 1 for
Bezier curves, so we shall not repeat the proof here. Notice, however, that we must be careful to
subdivide in both the s and the t directions. If we subdivide only along one parameter direction,
convergence is not assured because in the limit each of the control polyhedra will not necessarily
shrink to a single point. Thus to guarantee convergence it is best to alternate subdividing in the s
and t parameter directions.

3. Rendering and Intersection Algorithms

Subdivision is our main mathematical tool for analyzing Bezier curves and surfaces. Here we
shall apply recursive subdivision to develop fast, robust algorithms for rendering and intersecting
Bezier curves and surfaces.

3.1 Rendering and Intersecting Bezier Curves. To render a Bezier curve, we could begin by
applying the de Casteljau evaluation algorithm to compute lots of points along the curve. We could
then display a dense collection of points on the curve or we could connect the points on the curve
with straight lines and display these line segments.

But Bezier curves are smooth curves. If we applied this approach to rendering Bezier curves,
how many points would we need to compute in order for the curve to appear smooth? Some parts
of a Bezier curve may be relatively flat, so in these segments we would need to compute only a few
points and connect these points with straight lines, whereas other parts of a Bezier curve may be
highly bent and in these locations we would need to compute quite a lot of points for the line
segments approximating the curve to appear smooth (see Figure 7). The de Casteljau evaluation
algorithm allows us to compute lots of points along a Bezier curve. But if we want an accurate
portrayal of a Bezier curve, it is not clear how many points to compute or where on the curve to
concentrate these computations.

Recursive subdivision solves both of these problems: only a small amount of subdivision is
required on segments where the curve is relatively flat while additional subdivision can be
performed on segments where the curve is highly bent. The convergence of recursive subdivision is
quite fast and the output of recursive subdivision appears smooth (see Figure 5). This rapid
convergence and smooth appearance leads to the following recursive subdivision algorithm for
rendering Bezier curves.

 6

Figure 7: A cubic Bezier curve that is relatively flat near the end points but highly curved towards
the center (left). Thus near the end points we need to compute only a few points and connect these
points with straight lines, whereas near the center we need to compute quite a lot of points for the
line segments approximating the curve to appear smooth (right).

Rendering Algorithm -- Bezier Curves
If the Bezier curve can be approximated to within tolerance by the straight line segment joining
its first and last control points, then draw either this line segment or the control polygon.
Otherwise subdivide the Bezier curve (at the midpoint of the parameter interval) and render the
segments recursively.

To intersect two Bezier curves, we could use the rendering algorithm to generate a piecewise
linear approximation for each of the two curves and then intersect all these line segments. But this
approach would be highly inefficient because most of the short line segments would not intersect.
We can avoid these needless computations by combining recursive subdivision with the convex hull
property in order to avoid trying to compute intersections for those parts of the curve that fail to
intersect.

Intersection Algorithm -- Bezier Curves
If the convex hulls of the control points of two Bezier curves fail to intersect, then the curves
themselves do not intersect.
Otherwise if each Bezier curve can be approximated by the straight line segment joining its
first and last control points, then intersect these line segments.
Otherwise subdivide the two Bezier curves and intersect the pieces recursively.

To determine whether a Bezier curve can be approximated to within tolerance by the straight
line segment joining its first and last control points, it is sufficient, by the convex hull property, to
test whether all the interior control points lie within tolerance of this line segment. But recall from
Lecture 11, Section 4.1.2 that the distance between a point P and a line L determined by a point Q
and a direction vector v is given by

 7

€

dist2(P, L) =| P −Q |2 −
(P −Q) • v()2

v •v
 . (3.1)

Therefore to test whether the control points

€

Pk ,

€

k =1,K,n −1 lie within some tolerance

€

ε of the line
determined by the first and last control points

€

P0,Pn , we set

€

v = Pn − P0 in Equation (3.1) and test
whether or not

€

Pk − P0
2
−

(Pk − P0) • (Pn − P0)()2

(Pn − P0) • (Pn − P0)
<ε . (3.2)

Be careful. It may happen that a control point Pk is close to the line L determined by the first and
last control points P0,Pn even though the orthogonal projection of Pk onto L does not lie inside the
line segment P0Pn -- that is, Pk may be close to the line L even though it is not close to the line
segment P0Pn . To be sure that Pk lies close to the line segment P0Pn , you need only check that in
addition to Equation (3.2)

€

0 ≤ (Pk − P0) • (Pn − P0) ≤ | Pn − P0 |2 . (3.3)

It is relatively easy to test whether or not a Bezier curve can be approximated to within some
tolerance by a straight line segment. On the other hand, finding and intersecting the convex hulls of
two Bezier curves can be quite difficult and time consuming. In practice, the convex hulls in the
intersection algorithm are typically replaced by bounding boxes which are much easier to compute
and intersect than the actual convex hulls: simply take the minimum and maximum x and y
coordinates of the control points. Since the subdivision algorithm converges rapidly, not much time
is lost by replacing convex hulls with bounding boxes.

To complete the intersection algorithm for Bezier curves, we need to be able to intersect two
line segments:

€

L1(s) = (1− s)P0 + sP1 = P0 + s(P1 − P0)

€

0 ≤ s ≤1

€

L2(t) = (1− t)Q0 + tQ1 = Q0 + t(Q1 −Q0)

€

0 ≤ t ≤1
Two infinite lines intersect when

€

L1(s) = L2(t) -- that is, when

€

P0 + s(P1 − P0) = Q0 + t(Q1 −Q0)
or equivalently when

€

s(P1 − P0) − t(Q1 −Q0) = (Q0 − P0).
Dotting both sides first with

€

P1 − P0 and then with

€

Q1 −Q0 generates two linear equations in two
unknowns.

€

s (P1 − P0) • (P1 − P0){ }− t (Q1 −Q0) • (P1 − P0){ } = (Q0 − P0) • (P1 − P0)
s (P1 − P0) • (Q1 −Q0){ }− t (Q1 −Q0) • (Q1 −Q0){ } = (Q0 − P0) • (Q1 −Q0)

(3.4)

 8

which are easy to solve for the parameters

€

s,t (see Lecture 11, Section 5.1). The intersection point
lies on the two line segments if and only

€

0 ≤ s,t ≤1. In this case we can compute

€

L1(s) or

€

L2(t) to
find the actual intersection point.

3.2 Rendering and Intersecting Bezier Surfaces. The rendering and intersection algorithms
for Bezier curves can be extended to rendering and intersection algorithms for Bezier surfaces.
Line are replaced by planes, line segments are replaced by triangles. and recursive subdivision for
Bezier curves is replaced by recursive subdivision for Bezier surfaces. To render a Bezier patch, we
must first polygonalize the patch, so we begin with an algorithm to approximate a Bezier patch by a
collection of triangles.

Triangulation Algorithm -- Bezier Surfaces
If the Bezier patch can be approximated to within tolerance by two triangles each determined
by three of its four corner control points and if the four Bezier boundaries of the Bezier patch
can be approximated by straight line segments joining the four corner control points, then
triangulate the Bezier patch by the two triangles determined by the four corner control points.
Otherwise subdivide the Bezier surface (at the midpoint of the parameter interval in s or t) and
triangulate the segments recursively.

Rendering Algorithm -- Bezier Surfaces
Triangulate the Bezier patch
Apply your favorite shading and hidden surface algorithms to render the triangulated patch.

Ray Tracing Algorithm -- Bezier Surfaces
If the ray does not intersect the convex hull of the control points of the Bezier patch, then the
ray and the patch do not intersect.
Otherwise if the Bezier patch can be approximated to within tolerance by two triangles each
determined by three of its four corner control points and if the four Bezier boundaries of the
Bezier patch can be approximated by straight line segments joining the four corner control
points, then intersect the ray with the two triangles determined by the four corner control
points.
Otherwise subdivide the Bezier patch and ray trace the segments recursively.
Keep the intersection closest to the eye.

We already know from Section 3.1 how to test if a boundary Bezier curve can be
approximated by a straight line joining two of the boundary control points. We need to perform
this test in the triangulation algorithm to be sure that after subdivision cracks do not appear between
adjacent triangles. If a boundary is not a straight line, then subdividing on one side of the boundary

 9

but not the other may introduce a tear between adjacent triangles. But when the boundaries are flat,
such cracks will not appear.

To determine whether a Bezier surface can be approximated to within tolerance by a pair of
triangles determined by its four corner control points, it is sufficient, by the convex hull property, to
test whether each control point lies within some tolerance of at least one of the two triangles. Now
recall from Lecture 11, Section 4.1.3 that the distance between a point P and a plane S determined
by a point Q and a normal vector N is given by

€

dist(P,S) =
| (P −Q)• N |

| N |
 . (3.5)

Therefore to test whether a control points

€

Pij lies within some tolerance

€

ε of the plane determined

by the three corner control points

€

P00,P0n ,Pm0, we set

€

N = (P0n − P00) × (Pm0 − P00) in Equation
(3.5) and test whether or not

€

| (Pij − P00)• N |
| N |

< ε (3.6)
If this test fails, we apply the analogous test with the plane determined by the control points

€

Pmn,P0n ,Pm0. Again we must be careful. It may happen that a control point

€

Pij lies close to the

plane S of a triangle

€

Δ even though the orthogonal projection of the point

€

Pij onto the plane S does

not lie inside the triangle

€

Δ -- that is,

€

Pij may be close to the plane S even though

€

Pij is not close to
the triangle

€

Δ . To be sure that this is not the case, you need only check that the orthogonal

projection

€

Pij − (Pij −Q) •N{ }N lies inside

€

Δ . Now recall from Lecture 19, Section 3 that a point

R lies inside a triangle with vertices

€

P0, P1, P2 if and only if

€

det(N , Pi+1− Pi ,R− Pi) ≥ 0

€

i = 0,1,2,
where

€

N =(P1 − P0) × (P2 − P0)
is the normal to the plane of the triangle. These tests should be carried out first with

€

ΔP00P0nPm0
and only if these test fail should the tests then be performed with

€

ΔPmnP0nPm0.

Notice that in the ray tracing algorithm we do not simply triangulate the patch and then ray
trace the triangulated approximation. Rather we first perform a convex hull test in order to eliminate
as many subpatches as possible before we perform intersection calculations.

Finding the convex hull of a Bezier patch can be quite difficult and time consuming. In
practice for surfaces, as with curves, the convex hull is replaced by a bounding box. Again since the
subdivision algorithm converges rapidly, not much time is lost in the ray tracing algorithm by
replacing convex hulls with bounding boxes.

 10

To complete the ray tracing algorithm for Bezier patches, we need to be able to intersect a line
with a planar polygon. Here we can use the algorithm described in Lecture 19, Section 3.

Finally a Bezier patch may self shadow -- that is, a light ray may not be able to reach part of a
Bezier patch because the light has already struck another part of the patch. Therefore at the end of
the ray tracing algorithm we discard all the intersections of the ray and the patch, except for the
intersection closest to the eye.
.

4. The Variation Diminishing Property of Bezier Curves

We introduced Bezier curves because, unlike polynomial interpolation, Bezier approximation
does not introduce oscillations not already present in the data. This property of Bezier curves is
called the variation diminishing property. Recall from Lecture 24 that a curve

€

B(t) for a control
polygon P is said to be variation diminishing if for every line L

intersections of

€

B(t) and L ≤ # intersections of P and L .
We are now going to use Bezier subdivision to prove the variation diminishing property of Bezier
curves.

One way to introduce variation diminishing schemes is by corner cutting. Start with a
polygon P and form another polygon Q by cutting a corner off P (see Figure 8). Then it is easy to
see that every line L intersects P at least as often as L intersects Q. Thus Q is variation diminishing
with respect to P.

€

Q0 = P0
€

Q1
€

Q2

€

Q4 = P3

€

P1

€

Q3 = P2

€

•

€

•

€

• €

•

€

•

€

•

€

Q0 = P0
€

Q1
€

Q2

€

Q4 = P3

€

P1

€

Q3 = P2

€

L

€

L

€

•€

•
€

•

€

•

€

•

€

•

Figure 8: Corner cutting. The polygon with vertices

€

Q = {Qi} is generated from the polygon with
vertices

€

P = {Pj} by cutting off the corner at

€

P1 (left). Every line L intersects P at least as often as

L intersects Q because if L intersects the line segment

€

Q1Q2, then L must intersect either

€

P0P1 or

€

P1P2 (right).

 11

Now look at the geometric interpretation of the de Casteljau subdivision algorithm in Figure 3.
Evidently, the de Casteljau subdivision algorithm is a corner cutting procedure: first the corners at

€

P1,P2 are cut off, then the corner at

€

Δ is cut off (see Figure 9).

First step Second step

Figure 9: The de Casteljau subdivision algorithm as a sequence of corner cuts. In the first stage
corners are cut off at

€

P1,P2; in the second stage the corner is cut off at

€

Δ . Compare to Figure 3.

Although we have illustrated only the cubic case in Figure 8, it is easy to verify that the de
Casteljau subdivision algorithm is a corner cutting procedure in all degrees. This observation leads
to the following result.

Theorem 3: Bezier curves are variation diminishing.
Proof: Since recursive subdivision is a corner cutting procedure, the limit curve must be variation
diminishing with respect to the original control polygon. But by Theorem 1, the Bezier curve is the
limit curve generated by recursive subdivision, so Bezier curves are variation diminishing.

By the way, there is no known analogue of the variation diminishing property for Bezier
surfaces because for Bezier surfaces subdivision is not a corner cutting procedure.

5. Joining Bezier Curves Smoothly

In Lecture 24, Section 5 we used our procedure for differentiating the de Casteljau algorithm
for Bezier curves to derive constraints on the location of the control points to insure that two Bezier
curves meet smoothly where they join. Given a Bezier curve

€

P(t) with control points

€

P0,K,Pn , we
derived the following constraints for the location of the control points

€

Q0,K,Qn of another Bezier
curve

€

Q(t) that meets the first curve and matches the first k derivatives of

€

P(t) where they join.

 12

€

k = 0 ⇒ Q0 = Pn
k =1 ⇒ Q1 = Pn + (Pn − Pn−1)
k = 2 ⇒ Q2 = Pn−2 + 4(Pn − Pn−1)

: (5.1)

We observed that each derivative generates one new constraint on one additional control point.
These constraints are easy to solve, but rather cumbersome to write down. Here we show how to
use subdivision to determine the location of the points

€

Q0,K,Qk that guarantee k-fold continuity at
the join.

We know that the location of the points

€

Q0,K,Qk is unique. If we could find a curve

€

Q(t)
that meets the original curve

€

P(t) smoothly at the join, then the control points of

€

Q(t) would
necessarily give the location of the points

€

Q0,K,Qk . But we certainly do know such a curve, for

€

P(t) meets itself smoothly at the join! Suppose that

€

P(t) is parameterized over the interval

€

[a,b].
Let

€

Q(t) be

€

P(t) over the interval

€

[b,2b − a] -- that is, the interval starting at b and with the same
length as

€

[a,b]. Then

€

P(t) and

€

Q(t) surely meet smoothly at

€

t = b . All we need now are the
Bezier control points of

€

Q(t).

To find the Bezier control points of

€

P(t) over the intervals

€

[a,c] and

€

[c,b] , we can subdivide
the Bezier curve

€

P(t) at

€

t = c . Nothing in our subdivision algorithm requires that

€

a ≤ c ≤ b . If we
take

€

c = 2b − a , then the de Casteljau subdivision algorithm will generate the Bezier control points
for the curve

€

P(t) over the intervals

€

[a,2b − a] and

€

[2b − a,b]. By the symmetry property of Bezier
curves, (see Lecture 24, Exercise 2) the Bezier control points for the interval

€

[2b − a,b] are the same
as the Bezier control points for the interval

€

[b,2b − a] but in reverse order. Thus we can read off the
control points

€

Q0,K,Qk from the right edge of the de Casteljau subdivision algorithm for

€

c = 2b − a . But in this algorithm the labels on all the right pointing arrows are

€

−1 because

€

b − (2b − a)() / (b − a) = −1 and the labels on all the left pointing arrows are

€

2 because

€

(2b − a) − a() / (b − a) = 2. Notice that these labels are independent of the interval

€

[a,b]; hence this
algorithm is independent of the parameter interval. We illustrate this algorithm in Figure 10 for
cubic Bezier curves.

 13

0 1
2

€

Q3

€

−1

€

∗

€

∗

€

P0

€

P1

€

P2

€

P3 = Q0

€

∗

€

Q1€

Q2

€

−1
€

−1

€

2

€

2

€

2€

2

€

−1

€

−1

€

2

€

−1

€

2

Figure 10: The de Casteljau subdivision algorithm at

€

c = 2b − a for cubic Bezier curves. The first

€

k +1 points

€

Q0,K,Qk that emerge on the right lateral edge of the diagram are the control points
that guarantee k-fold continuity at the join. Compare these points to the values in Equations (5.1).

6. Summary

Subdivision is our main technical tool for analyzing Bezier curves and surfaces. In this lecture
we used Bezier subdivision to:

i. develop a divide and conquer strategy for rendering and intersecting Bezier curves and
surfaces;

ii. prove the variation diminishing property for Bezier curves;
iii. guarantee that two Bezier curves connect with k-fold smoothness at their join.

The basic problem in Bezier subdivision is: given a collection of control points

€

P0,K,Pn that
describe a Bezier curve over the parameter interval

€

[a,b], find the control points

€

Q0,K,Qn and

€

R0,K,Rn that describe the segments of the same Bezier curve over the parameter intervals

€

[a,c]
and

€

[c,b] .

De Casteljau’s evaluation algorithm for Bezier curves is also a subdivision procedure. The
subdivision control points

€

Q0,K,Qn and

€

R0,K,Rn emerge along the left and right edges of the de
Casteljau evaluation algorithm at

€

t = c . Bezier subdivision is usually applied at the midpoint of the
parameter domain, where the labels along the all the arrows are 1/2 (see Figure 11)..

 14

0 1
2

€

Q3 = R0

€

1 / 2

€

Q1

€

∇

€

Q0 = P0

€

P1

€

P2

€

P3 = R3

€

Q2

€

R2€

R1

€

1 / 2
€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2

€

1 / 2

Figure 11: The de Casteljau subdivision algorithm for a cubic Bezier curve at the midpoint of the
parameter interval. Midpoint subdivision is independent of the choice of the parameter domain.

Exercises:

1. Let

€

P(t) be a Bezier curve defined over the interval

€

[a,b].
a. Show that in the de Casteljau subdivision algorithm at

€

c = (1− r)a + rb the labels on all
the right pointing arrows are

€

1− r and the labels on all the left pointing arrows are r (see
Figure 12).

b. Conclude from part a that if we subdivide at a fixed ratio of the parameter domain, then
the de Casteljau subdivision algorithm is independent of the parameter interval.

0 1
2

€

Q3 = R0

€

1− r

€

Q1

€

∇

€

Q0 = P0

€

P1

€

P2

€

P3 = R3

€

Q2

€

R2€

R1

€

1− r
€

1− r

€

r

€

r

€

r€

r

€

1− r

€

1− r

€

r

€

1− r

€

r

Figure 12: The de Casteljau subdivision algorithm at the parameter value

€

c = (1− r)a + rb for a
cubic Bezier curve defined over the interval

€

[a,b]. The labels on all the right pointing arrows are

€

1− r and the labels on all the left pointing arrows are r.

 15

2. Consider a Bezier curve defined over the interval

€

[0,1]. Bezier subdivision at t = 1/ 2
generates a binary tree whose nodes are control polygons. Denote the original control polygon by
P, and let this polygon be the root of the tree. Let P0 -- the left child of P -- denote the control
polygon for the left segment of the Bezier curve (from t = 0 to t = 1/ 2), and let P1 -- the right
child of P -- denote the control polygon for the right portion of the curve (from t = 1/ 2 to t = 1).
Continue to build this binary tree recursively in this fashion. Thus if Pb is a node in the tree, then
Pb represents the control polygon for a portion of the curve, and Pb0 -- the left child of Pb --
represents the control polygon for the left half of the Bezier segment represented by Pb , while Pb1 -
- the right child of Pb -- represents the control polygon for the right half of the Bezier segment
represented by Pb (see Figure 13).

P

0 1

P0

P00 P01

P001P000 P010 P011
2

P1

P11

P111

P10

P100 P101 P110

 M
Figure 13: The binary tree of control polygons generated by recursive subdivision of a Bezier
curve at t = 1/ 2.

a. Prove that

Pb1Lbn is the control polygon for the original Bezier curve from t = b to

t = b + 2−n , where b is the binary fraction represented by 0.b1Lbn .
b. Prove that the sequence of control polygons

Pb1, Pb1b2 ,..., Pb1Lbn , ... converges to the

point on the Bezier curve at parameter value b = Limn→∞0.b1Lbn .

3. Develop an algorithm to intersect a Bezier curve with a Bezier surface based on recursive
subdivision.

4. Develop an algorithm to intersect two Bezier patches based on recursive subdivision.

 16

5. Prove Theorem 2: that the control polyhedra generated by recursive subdivision converge to
the tensor product Bezier patch

€

B(s,t) for the original control polyhedron provided that the
subdivision is done in both the s and t directions.

6. Let

€

P(t) be a Bezier curve with control points

€

P0,K,Pn .
a. Prove that the arc length of a Bezier curve is greater than or equal to the length of the line

joining the first and last control points and less than or equal to the perimeter of the
control polygon -- that is,

€

Pn − P0 ≤ arclenth P(t)() ≤ Pk+1− Pk
k=0

n−1
∑ .

b. Explain how to use the result of part a to compute the arc length of a Bezier curve to
within any desired tolerance.

Programming Projects:

1. Bezier Curves and Surfaces
Implement a modeling system based on Bezier curves and surfaces in your favorite
programming language using your favorite API.
a. Include algorithms for rendering Bezier curves and surfaces based on recursive

subdivision.
b. Incorporate the ability to move control points interactively and have the Bezier curve or

surface adjust in real time.
c. Create a new font using Bezier curves.
d. Build some interesting freeform shapes using Bezier patches.

2. Root Finding Algorithm for Polynomials in Bezier Form
A. Implement the following root finding algorithm for polynomials of arbitrary degree n.

Input:

€

c0,K,cn = Bezier coefficients of

€

P(t) over the interval

€

[a,b]

Root Finding Algorithm
1. If

€

ci = 0,

€

i = 0,K, j −1, then
a. there is a multiple root of order j at

€

t = a; set

€

ck =
nL(n − j +1)

(k + j)L(k +1)(b − a) j c j+k

€

k = 0,K,n − j .

€

n = n − j
2. If

€

cn−i = 0,

€

i = 0,K, j −1, then
a. there is a multiple root of order j at

€

t = b; set

 17

€

ck =
nL(n − j +1)

(n − k)L (n − j − k +1)(b − a) j ck

€

k = 0,K,n − j .

€

n = n − j
3. If

€

ck > 0 for all k or if

€

ck < 0 for all k, then there is no root in the interval

€

[a,b]. STOP.
4. If

€

ck ≥ 0 for

€

0 ≤ k < i and

€

ck ≤ 0 for

€

i ≤ k ≤ n (one sign change), then
a. there is exactly one root r in the interval

€

[a,b]
b. if

€

b − a <ε , set

€

r = (a + b) / 2
otherwise, subdivide the interval at the midpoint and search for the root in each
interval recursively.

5. Otherwise, subdivide the interval at the midpoint and find the roots in each interval
recursively.

B. Prove that this algorithm finds all the roots of the given polynomial in the interval

€

[a,b].

C. Compare the speed and accuracy of this root finding algorithm to Newton’s method.

 18

