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Abstract 

Korf, R.E., Multi-player alpha-beta pruning (Research Note), Artificial Intelligence 48 
(1991) 99-111. 

We consider the generalization of minimax search with alpha-beta pruning to non-coopera- 
tive, perfect-information games with more than two players. The minimax algorithm was 
generalized in [2] to the maxn algorithm applied to vectors of n-tuples representing the 
evaluations for each of the players. If we assume an upper bound on the sum of the 
evaluations for each player, and a lower bound on each individual evaluation, then shallow 
alpha-beta pruning is possible, but not deep pruning. In the best case, the asymptotic 
branching factor is reduced to (1 + 4bv'~b-"s~-3)/2. In the average case, however, pruning does 
not reduce the asymptotic branching factor. Thus, alpha-beta pruning is found to be 
effective only in the special case of two-player games. In addition, we show that it is an 
optimal directional algorithm for two players. 

1. Introduction 

Minimax search with alpha-beta pruning is the predominant algorithm 
employed by two-player game programs [1, 3, 5]. Figure 1 shows a game tree, 
where squares represent maximizing nodes and circles correspond to minimiz- 
ing nodes, along with its minimax value, bounds on interior nodes, and those 
branches pruned by alpha-beta. 

In this paper, we consider the generalization of alpha-beta pruning to 
non-cooperative, perfect-information games with more than two players. For 
example, Chinese Checkers can involve up to six different players moving 

* Section 3 of this paper represents a more complete treatment of Section 3 of a paper by the 
same author entitled, "Generalized game trees", that appeared in the Proceedings of the Eleventh 
International Joint Conference on Artificial Intelligence ( IJCA1-89), Detroit, MI (1989). 
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Fig. 1. Two-player alpha-beta pruning. 

alternately. As another example, Othello can easily be extended to an arbitrary 
number of players by having different colored pieces for each player, and 
modifying the rules such that whenever a mixed row of opposing pieces is 
flanked on both sides by two pieces of the same player, then all the pieces are 
captured by the flanking player. 

2. Maxn algorithm 

Luckhardt and Irani [2] extended minimax to multi-player games, calling the 
resulting algorithm max". For typographical convenience we refer to it as 
maxn.  They assume that the players alternate moves, that each player tries to 
maximize his or her perceived return, and is indifferent to the returns of the 
remaining players. At the frontier nodes, an evaluation function is applied that 
returns an N-tuple of values, where N is the number of players, with each 
component corresponding to the estimated merit of the position with respect to 
one of the players. Then, the value of each interior node where player i is to 
move is the entire N-tuple of the child for which the ith component is a 
maximum. Figure 2 shows a maxn tree for three players, with the correspond- 
ing maxn values. 

(2,8,1)(1,7,2) (5,6,3) (6,5,4) (8,4,S) (7,3,6) (4,2,7) (3,1,8) 

Fig. 2. Three-player maxn game tree. 
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More formally, define M(x) to be the static heuristic value of node x, and 
M(x, p) to be the backed-up maxn value of node x, given that player p is to 
move at node x. Ms(x, p) is the component of M(x, p) that corresponds to the 
return for player i. We can then define the maxn value of a node recursively as 
follows: 

[ M(x), if x is a frontier node, 
M(x, p) = [ M(xi, p') , otherwise, 

such that Mp(xi, p ' )  = m a x  Mp(Xi, p') where x i are the children of node x, p '  
is the player that follows player p in the move order, and ties are broken in 
favor of the leftmost node. 

For example, an evaluation function for multi-player Othello might return 
the number of pieces for each player on the board at any given point. 

Minimax can be viewed as a special case of maxn for two players. The 
evaluation function returns an ordered pair of x and - x ,  and each player 
maximizes its component at its moves. 

Luckhardt and Irani [2] observed that at nodes where player i is to move, 
only the ith component of the children need be evaluated. At best, this can 
produce a constant factor speedup, but it may be no less expensive to compute 
all components than to compute only one. They correctly concluded that 
without further assumptions on the values of the components, pruning of entire 
branches is not possible with more than two players. Thus, they did not explore 
such pruning any further. 

They used the terms "shallow pruning" and "deep pruning" to refer to their 
techniques of avoiding some partial evaluations. Since these terms had previ- 
ously been used to describe actual tree pruning in the alpha-beta literature [1], 
we will use the original meanings of both these terms, at the cost of inconsis- 
tency with Luckhardt 's and Irani's terminology [2]. 

3. Alpha-beta in multi-player games 

If there is an upper bound on the sum of all components of a tuple, and 
there is a lower bound on the values of each component,  then actual tree 
pruning is possible. The first condition is a weaker form of the standard 
constant-sum assumption, which is in fact required for two-player alpha-beta 
pruning. The second is equivalent to assuming a lower bound of zero on each 
component,  since any other lower bound can be shifted to zero by subtracting 
it from every component. Most practical evaluation functions will satisfy both 
these conditions, since violating them implies that the value of an individual 
component can be unbounded in at least one direction. For example, in the 
evaluation function described above for multi-player Othello, no player can 
have less than zero pieces on the board, and the total number of pieces on the 
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board is the same for all nodes at the same level in the game tree, since exactly 

one piece is added at each move.  

3.1. Immediate pruning 

The simplest kind of pruning possible under these assumptions occurs when 
player i is to move,  and the ith component  of one of its children equals the 

upper  bound on the sum of all components .  In that case, all remaining children 

can be pruned,  since no child's ith component  can exceed the upper  bound on 
the sum. We will refer to this as immediate pruning. This is equivalent to 

situations in the two-player case when a child of  a Max node has a value of ~¢, 

or a child of a Min node has a value of - ~ .  

3.2. Shallow pruning 

A more  complex situation is called shallow pruning in the alpha-beta 
literature. Figure 3 shows an example of shallow pruning in a three-player  

game,  where the upper  bound on the sum of each component  is 9, Note  that in 

this particular example,  the sum of each component  is exactly 9, but an upper  
bound is all that is required. Evaluating node b results in a lower bound of 3 on 

the first component  of node a, since player one is to move at node a. This 
implies an upper  bound on each of the remaining components  of 9 - 3  = 6. 

Evaluating node g produces a lower bound of 7 on the second component  of 

node f,  since player two is to move at node f. Similarly, this implies an upper  
bound on the remaining components  of 9 -  7 = 2. Since the upper  bound (2) 
on the first component  of node f is less than or equal to the lower bound on the 

first component  of  node a (3), player one won' t  choose node f and its 
remaining children can be pruned.  Similarly, evaluating node i causes its 

remaining brothers to be pruned.  This is similar to the pruning in the left 

subtree of Fig. 1. 
The procedure Shallow takes a Node to be evaluated,  the Player to move at 

that node, and an upper  Bound on the component  of the player to move,  and 
returns an N-tuple that is the maxn value of the node. Sum is the global upper  
bound on the sum of all components  of  an N-tuple,  and all components  are 
assumed to be non-negative. Initially, Shallow is called with the root of the 

(3,3,3) (4,2,3) (3,1,5) (1,7,1) (1,6,2) 

Fig. 3. Shallow pruning in three-player game tree. 
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tree,  the player to move at the root ,  and Sum. Note that the shallow pruning 
procedure  includes immediate  pruning as a special case. 

Shallow(Node, Player, Bound) 

IF Node is terminal, RETURN static value 

Best = Shallow(first Child, next Player, Sum) 

FOR each remaining Child 

IF Best[Player] > = Bound, RETURN Best 

Current = Shallow(Child, next Player, Sum - Best[Player]) 

IF Current[Player] > Best[Player], Best = Current 

RETURN Best 

3.3. Correctness of shallow pruning procedure 

Here  we establish the correctness of the shallow pruning procedure,  in the 

sense that it computes  the maxn value defined in Section 2. 

Theorem 1. I f  the evaluation of  any position for any player is non-negative, and 
the sum of all player's evaluations in any given position is less than or equal to 
sum, and ties are broken in favor of the leftmost node, then Shallow(a, p, sum) 
= M(a, p), for any node a and player p. 

Proof. Since the only difference between the maxn procedure  and the shallow 
pruning procedure  is that it doesn ' t  examine certain nodes, it suffices to show 

that the pruned nodes can have no effect on the maxn value of the root.  There  
are two types of pruning implemented  in the shallow pruning procedure,  
immediate  pruning and shallow pruning. 

Figure 4 shows the generic case of immediate  pruning. Without loss of 

generality, we assume that player one is to move at the root. In order  for 

immediate  pruning to occur, Ml(b, 2) = sum, for some child b of node a. Since 
all components  are assumed to be non-negative,  sum is the maximum possible 

value of any individual component ,  and the remaining components  must be 

zero. Therefore  sum = M~(b, 2) = max M~(a i, 2), where a i is a child of node a. 
Thus,  M(a, 1) = M(b, 2), and the remaining children of node a need not be 

examined.  
Figure 5 shows the generic case of shallow pruning. Again we assume 

without loss of generali ty that player one is to move at the root,  followed by 

(sum, 0, 0 . . . .  ) 

Fig. 4. Generic case of immediate pruning. 
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x + y ~ s u m  d 3L3_J 
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Fig. 5. Gene r i c  case of  sha l low p run ing .  
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players two and three in turn. Ml(b,  2) = x, M2(d, 3) = y, and x + y >t sum, in 

order  for shallow pruning to occur. Since player two is to move at node c, 

M2(c, 2) = max M2(c i, 3), where ci is a child of node c. Therefore ,  M2(c, 2) 
M2(d, 3 ) =  y. Since the sum of all components  cannot  exceed sum, and all 
components  are non-negative,  M~(c, 2) ~< sum - y ~ x, since x + y >1 sum. 

Since M l(b,  2) = x I> M 1 (c, 2), and ties are broken in favor of leftmost nodes, 
M(a, 1) ~ M(c, 2), and node c can have no effect on the maxn value of node a. 

Therefore ,  the remaining children of node c can be pruned. 
Since neither immediate  nor shallow pruning eliminate nodes that can effect 

the maxn value of the root node,  and the shallow pruning procedure returns 
the maxn value of the nodes it has examined,  it correctly calculates the maxn 

value of the root node. C] 

3.4. Failure of  deep pruning 

In a two-player game,  alpha-beta pruning allows an additional type of 
pruning known as deep pruning. For  example,  in Fig. 1, nodes b and c are 

pruned based on bounds inherited f rom their great-great-grandparent ,  the root 
in this case. In general,  deep pruning refers to pruning a node based on a 

bound inherited f rom its great-grandparent ,  or any more  distant ancestor. In a 
two-player game tree, it can only occur in trees of height four or greater.  
Surprisingly, deep pruning does not generalize to more than two players. 

Figure 6 illustrates the problem.  Again,  the upper  bound on the sum of each 
component  is 9. Evaluating node b produces a lower bound of 5 on the first 
component  of node a and hence an upper  bound of 9 - 5 = 4 on the remaining 

components .  Evaluating node e results in a lower bound of 5 on the third 
component  of node d and hence an upper  bound of 9 - 5 = 4 on the remaining 
components .  Since the upper  bound of 4 on the first component  of node d is 
less than the lower bound of 5 on the first component  of node a, the value of 
node d cannot become the value of node a. Thus, we are tempted to prune 

node f. 
With three players, however,  the value of node f c o u l d  effect the value of the 

root,  depending on the value of node g. For example,  if the value of node f 
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4 (6, 1, 2) 

Je f 
(2, 2, 5) (2, 3, 4) or (3, O, 6) 

Fig. 6. Failure of deep pruning for three players. 
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were (2, 3, 4), the value of node d would be (2, 2,'5), the value of node c 
would be (2, 2, 5), and the value of node a would be (5, 2, 2). On the other 
hand, if the value of node f were (3, 0, 6), then the value of node d would be 
(3, 0, 6), the value of node c would be (6, 1, 2), and the value of node a would 
be (6, 1, 2). Thus, even though the value of node fcannot  be the maxn value of 
the root, it can affect it. Hence, it cannot be pruned. 

3.5. Optimality of shallow pruning 

Given the failure of deep pruning in this example, is there a more restricted 
form of pruning that is valid, or is shallow pruning the best we can do? The 
answer is the latter, as expressed by the following theorem: 

Theorem 2. Every directional algorithm that computes the maxn value of a 
game tree with more than two players must evaluate every terminal node 
evaluated by shallow pruning under the same ordering. 

A directional algorithm [4] is one in which the order of node evaluation is 
independent of the value of the nodes, and once a node is pruned it can never 
be revisited. For example, a strictly left-to-right algorithm is directional. 

Proof sketch. Since the actual proof given below is somewhat tedious and not 
very revealing, we first present here an overview and example of the argument. 
The main idea is illustrated by the construction in Fig. 7, which shows a 
3-player, 6-level tree. We assume that node n is evaluated by shallow pruning 
but pruned by another algorithm. We then show that the value of every node 
above it depends on the value of node n. The letters to the left of the path 
from the root to node n represent the greatest lower bounds on the compo- 
nents corresponding to the player to move at each node. Since by assumption 
node n is evaluated by shallow pruning, it must be the case that for any two 
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Fig. 7. Proof  sketch of optimali ty of  shallow pruning.  

consecutive bounds x and y, x + y is strictly less than the global upper bound. 
Since the decision to skip node n is made before any of the nodes to the right 
of the path are examined, we are free to choose any values for these nodes 
consistent with the global bounds. For this purpose, x + represents a value 
greater than x by an arbitrarily small amount. The reader is encouraged to 
assign each of the two alternative values to node n, and then compute the 
maxn value of the root, to see that it is different in the two cases. The 
propagation of values up the tree can be viewed as a "zipper"  effect in the 
sense that the original order  of the " t ee th"  (nodes) at the bottom determines 
the order  of the teeth at the top, even though no individual tooth can move 
very far. The formal proof  below is by induction on the height of the tree and 
generalizes the result to an arbitrary number  of players greater than two. 

Proof (see Fig. 8). Assume the converse. Namely, that there exists a direction- 
al maxn algorithm A, and a minimax tree T with N players, with a leaf node X ° 
that is evaluated by shallow pruning but not by algorithm A. Since both 
shallow pruning and algorithm A are directional, and by assumption visit nodes 
in the same order,  (re)order the nodes in T from left to right in the order  they 
are visited, without loss of generality. Let X i refer to the ancestor of node X ° 
at height i in the tree, on the unique path from the root to X °, and also to its 
maxn value, depending on the context. Let X~j refer to the j th component  of 

i i the maxn value of node X i. Thus, X i = (Xio . . . . .  X/ . . . . .  X,,). Let  p( i )  be the 
i i - I  player to move at level i in the tree. Thus, Xe¢i) is the maximum value of Wp(il 

among all the children W i i of X i. 
Consider the state of the shallow pruning algorithm just before it evaluates 

node X °. It consists of the path from the root to node X °, plus a set of bounds 
i - I  a i, where c~ i is equal to the maximum value of Weci) among all the children 

W i- 1 of X i to the left of X ~ ~. In other  words, ai is the greatest lower bound so 
far on X*pu). If at any level i, X i-1 has no brothers to its left, then a~ will simply 
equal the global lower bound on each component .  Without loss of generality, 
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I'--], i 1- ~ ~ (V:(:) = °ti + e' 

yi-1 = 0 )  
p(i+2) i-I 

Xp(i) = 0 o._[r 

(Xp-(li) = U, i + 2e, xi'lp(i+ 1 ) = 0 )  

Fig. 8. Inductive proof of optimality of shallow pruning. 

let the global lower bound on each component  be zero and the global upper 
bound on the sum of all components  be one. Any other  bounds can always be 
mapped to this range without affecting either algorithm since only relative 
values matter. 

The assumption that X ° is evaluated by shallow pruning constrains the values 
of the ai. First, each of the ai must be strictly less than one. Otherwise, the 
remaining children of X ~ would be immediately pruned,  pruning X ° as well. 
Fur thermore,  each lower bound a~ induces a corresponding upper bound of 
1 - a e on the remaining components  of X i. If this upper bound on X i is less p(i-1) 

X '-~ then the remaining than or equal to the lower bound of ai_ ~ on p~s_~), 
children of X i would be pruned by shallow pruning, pruning X ° as well. Thus, 

for a l l i 1 > l ,  1 - a i > a ~ _ l ,  or a ~ + a ~ _ ~ < l .  
Let  Y~ be a brother  of X i to its right. When either algorithm is about to 

consider X °, the values and even the existence of the Y~ nodes is unknown to 
the algorithms. Thus, we are free to choose values for the Y~, consistent with 
the global bounds, without affecting either algorithm's decision to evaluate or 
prune X °. We are also free to choose a value for X ° as well, since the decision 
to evaluate or prune it is made before its value is known. The rest of the proof  
consists of carefully choosing values for the yi and X ° so that the value of X ~, 
for all i, will depend on the value of X °. This will be done by induction on i. 

Basis step: i = 0. Trivially, if i = 0, then the value of X ~ = X ° depends on X °. 
However ,  to strengthen the induction hypothesis, we will choose two different 

0 0 values for X °. In one case, let Xp(~)= 0, and in the other  case, let Xp(~)= 
a~ + 2 e ,  and X°(2~ = 0, where e is an arbitrarily small positive value. In 
particular, choose e such that ai + a~_ Z + 3e < 1, for all i/> 1. 

Induction step. Now assume that for all values up to and including i -  1, 
i -1  i -1  i - I  Xp(i) = O, or Xp(i) = a i -1- 2e and Xp(~+~) = O, depending on the value of X °. 
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Choose the value of Y' ~ as follows: yi- pl , )  = ai + e and Y' p ( i + l )  = O{i~ I + 2 E  and 

y,-~ = 0, Note that the sum of the y i ~ components  is ai + e + ~i, ~ + 2e + pIi + 2) 
0 = a i + ai+ t + 3 e <  1, since a: + ai+ 1 < 1, and e was chosen to satisfy this 

property.  Thus, this is a legal set of components  for the value of Yi 1. 
Now there are two cases to consider: In case I, Xif,<~ = 0. In that case, since 
i I i I yi-I 

Y p ( i )  = a i  + 6 ) oL i ~ (} = X p ( i ) ,  i s  t h e  b e s t  c h i l d  o f  X ~, a n d  t h e  v a l u e  o f  X ~ 
i = Y' ~ + 2 e  and equals the value of Y' ~. In particular, Xpo+~ ) ~,1~+1~=o~+~ 

i i I i I i ~ = 0 .  In that case, Xp(i+2) = Yp( i+2)= 0. In case II,  Xpo ) = ai + 2e and Xp~+l)  
i~-I i - 1  x i - I  since X p ~  = ai + 2e > ~i + e = Y p,)> a , is the best child of X ~, and the 

• i i 1 
value of X i equals the value of X ~ i In particular, Xp~+!) = X j,,+ i i = 0. Thus, 

i 
= 0 ,  and in the other  case,  Xp( i+ l )=OLi+l+26  and in one c a s e ,  Xp(i+l) 

XJp~+2) = 0. This is the induction hypothesis for i. 
Thus, the induction hypothesis is true for i, given that it is true for i -  1. 

Therefore ,  for such a tree of any height, the maxn value of the root depends on 
X". But if algorithm A prunes X °, it cannot  determine the maxn value of the 

root. This contradicts our assumption that algorithm A works for any maxn 

tree. Therefore ,  every directional algorithm that computes  the maxn value of a 
game tree with more than two players must evaluate every terminal node 

evaluated by shallow pruning. [] 

3.6. Best-case per formance  

How effective is shallow pruning in the best case? For simplicity, we will 

exclude immediate  pruning by assuming that no one component  can equal the 
upper  bound on the sum. The best-case analysis of  shallow pruning is indepen- 

dent of the number  of players and was done by Knuth and Moore  [1] for two 

players. 
In order  to evaluate a node in the best case, one child must be evaluated,  

and then evaluating one grandchild of each remaining child will cause the 
remaining grandchildren to be pruned (see Fig. 3). Thus,  If F ( d )  is the number  
of leaf nodes generated to evaluate a tree of depth d with branching factor b in 

the best case, then F(d )  = F(d  - 1) + (b - 1)*F(d - 2). Since a tree of depth 
zero is a single node,  and a tree of depth one requires all children to be 
evaluated,  the initial conditions are F ( 0 ) =  1 and F ( 1 ) =  b. Note that in a 
binary tree, F(d)  is the familiar Fibonacci sequence. The solution to the 

general recurrence has an asymptotic  branching factor of ½ (1 + x /Tb--  3). For 
large values of b, this approaches ~ which is the best-case performance of full 
two-player alpha-beta pruning. 

3.7. Average-case per formance  

Knuth and Moore  [1] also determined that in the average case, the asymp- 
totic branching factor of two-player shallow pruning is approximately b / log  b. 
They assumed independent ,  distinct leaf values. 
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In the case of multiple players, however, our model of the evaluation 
function must have a lower bound on each component and an upper bound on 
their sum. For simplicity, assume that the lower bound is zero and that the sum 
is exactly one. Thus, we need a way of randomly choosing n-tuples such that 
each component is identically distributed between zero and one, and the sum 
of all components is one. One way to do this is by cutting the zero-one interval 
in n -  1 places, with each cut point independently and identically distributed 
from zero to one, and using the n resulting segments as the components of the 
n-tuple. Another way is to choose n values independently and identically 
distributed from zero to one, and then divide each component by the sum of all 
of them. Furthermore, we assume that each tuple is generated independently 
of the others. 

Under this average-case model, the asymptotic branching factor of shallow 
pruning with more than two players is simply b, the brute-force branching 
factor. The analysis relies on the minimax convergence theorem [4], which 
holds for two-player minimax trees. This surprising phenomenon is that if the 
leaf values are chosen independently from the same distribution, the variance 
of the root value decreases with increasing height of the tree, and in the limit 
of infinite height, the root value can be predicted with probability one. The 
actual limiting value depends on the leaf distribution and also on which player 
moves last in the tree, but the convergence does not. Based on empirical 
studies, we conjecture that minimax convergence applies to maxn trees as well. 

In order for pruning to take place, the lower bound on one component must 
be greater than or equal to its upper bound, which equals one minus the lower 
bound on another component. Thus, pruning only takes place when the sum of 
the lower bounds on two different components is greater than or equal to one. 
In order for this to occur in the limiting value, the values of the remaining 
components must be zero, since the sum of the two components in question is 
one. This cannot happen in the limiting value, assuming continuous terminal 
values. Thus, while pruning occurs at low levels of the tree, at higher levels it 
becomes increasingly rare, and in the limit of infinite depth, it disappears 
entirely. Thus, the asymptotic branching factor is simply b. 

The shallow pruning algorithm has been implemented and its efficiency 
tested using the above model of independent and identically distributed cut 
points. Not only does the effective branching factor converge to b, but the 
convergence is rapid enough that even for small trees, the branching factor is 
very close to b. Thus, in practice, alpha-beta is not effective for multi-player 
trees. 

In the case of two-player alpha-beta, the performance of the algorithm is 
purely a function of the order of the terminal values and not the values 
themselves. In particular, Knuth and Moore [1] show that for any set of 
terminal values there is an ordering for which alpha-beta achieves its best-case 
performance. For example, if all terminal values were equal, then alpha-beta 
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evaluates only the minimum number  of nodes. In the multi-player case, the 
situation is quite different. While node ordering can have an effect on the 
performance of multi-player pruning, even under optimal ordering the actual 
values can limit the effectiveness of the algorithm. In particular, if at a given 
level of the tree all the values are identical and more than two components are 
non-zero, which is what happens given maxn convergence, then no further 
pruning is possible above that level in the tree. Thus, the above result, that 
shallow pruning does not reduce the asymptotic branching factor in the average 
case, does not depend on the ordering of nodes in the tree. 

4. Optimality of alpha-beta 

Since Theorem 1 shows that shallow pruning is an optimal directional 
algorithm for game trees with more than two players, an obvious question is 
what is the optimal directional algorithm for two-player minimax trees? The 
answer is standard alpha-beta pruning. While far from surprising, this result 
has not appeared in the literature, to our knowledge. 

Theorem 3. Every directional minimax search algorithm must evaluate every 
leaf node evaluated by alpha-beta under the same ordering. 

Proof. Assume the converse. Namely, that there exists a directional minimax 
algorithm A, and a minimax tree T, with a leaf node n that is evaluated by 
alpha-beta but not by algorithm A. Since both algorithms are directional, 
(re)order the nodes in T from left to right in the order  they are visited. 
Consider the state of the alpha-beta algorithm just before it evaluates node n. 
It consists of the path from the root to node n, together with a set of lower 
bounds a i on the MAX ancestors of n, and a set of upper bounds/3i on the 
MIN ancestors of n. When the algorithm is called on node n, a is the maximum 
of the a~, or the greatest lower bound on all of the MAX ancestors of n, and/3 
is the minimum of the/3~, or the least upper bound on all of the MIN ancestors 
of n, based on all nodes to the left of node n. Since by assumption node n is 
evaluated by alpha-beta, a must be strictly less than/3,  or node n would have 
been pruned. Now, construct a new tree T' from T by removing all branches to 
the right of the path from the root to node n, making node n the last frontier 
node in a left-to-right traversal of T'. Choose a value x for node n in T' that is 
greater than a and less than/3. Since x is strictly greater than the lower bound 
on all its MAX ancestors in T', and strictly less than the upper bound on all its 
MIN ancestors in T', x is the unique minimax value of tree T'. Since algorithm 
A by assumption is a directional algorithm and decides to prune node n in T 
based on the nodes to its left, it must also prune node n in T'  because T and T' 
are identical to the left of node n. But then algorithm A cannot correctly 
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compute the minimax value of T', since it is uniquely determined by node n 
which is pruned by A in T'. This contradicts our assumption that algorithm A is 
a correct minimax search algorithm. Therefore, every directional minimax 
algorithm must evaluate every leaf node evaluated by alpha-beta. [] 

5. Conclusions 

We considered the extension of alpha-beta pruning to games with more than 
two players. Minimax was generalized to maxn by [2]. If we assume that there 
is a lower bound on each component of the evaluation function, and an upper 
bound on the sum of all components, then shallow alpha-beta pruning is valid, 
but not deep pruning. In the best case, this results in significant savings in 
computation, but in the average case it does not reduce the asymptotic 
branching factor. This implies that the effectiveness of alpha-beta is limited to 
the case of two players. We also showed that alpha-beta is an optimal 
directional algorithm for two-player games. 
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