
Artificial Intelligence 48 (1991) 99-111 99
Elsevier

Research Note

Multi-player alpha-beta pruning
Richard E. Korf*
Computer Science Department, University of California, Los Angeles, Los Angeles,
CA 90024, USA

Received August 1989
Revised June 1990

Abstract

Korf, R.E., Multi-player alpha-beta pruning (Research Note), Artificial Intelligence 48
(1991) 99-111.

We consider the generalization of minimax search with alpha-beta pruning to non-coopera-
tive, perfect-information games with more than two players. The minimax algorithm was
generalized in [2] to the maxn algorithm applied to vectors of n-tuples representing the
evaluations for each of the players. If we assume an upper bound on the sum of the
evaluations for each player, and a lower bound on each individual evaluation, then shallow
alpha-beta pruning is possible, but not deep pruning. In the best case, the asymptotic
branching factor is reduced to (1 + 4bv'~b-"s~-3)/2. In the average case, however, pruning does
not reduce the asymptotic branching factor. Thus, alpha-beta pruning is found to be
effective only in the special case of two-player games. In addition, we show that it is an
optimal directional algorithm for two players.

1. Introduction

Minimax search with alpha-beta pruning is the predominant algorithm
employed by two-player game programs [1, 3, 5]. Figure 1 shows a game tree,
where squares represent maximizing nodes and circles correspond to minimiz-
ing nodes, along with its minimax value, bounds on interior nodes, and those
branches pruned by alpha-beta.

In this paper, we consider the generalization of alpha-beta pruning to
non-cooperative, perfect-information games with more than two players. For
example, Chinese Checkers can involve up to six different players moving

* Section 3 of this paper represents a more complete treatment of Section 3 of a paper by the
same author entitled, "Generalized game trees", that appeared in the Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCA1-89), Detroit, MI (1989).

0004-3702/91/$03.50 (~ 1991 - - Elsevier Science Publishers B.V.

100 R.E. Korf

11

1 1 1

/

_>15

9 a 15 16

_<3

3 b c

Fig. 1. Two-player alpha-beta pruning.

alternately. As another example, Othello can easily be extended to an arbitrary
number of players by having different colored pieces for each player, and
modifying the rules such that whenever a mixed row of opposing pieces is
flanked on both sides by two pieces of the same player, then all the pieces are
captured by the flanking player.

2. Maxn algorithm

Luckhardt and Irani [2] extended minimax to multi-player games, calling the
resulting algorithm max". For typographical convenience we refer to it as
maxn. They assume that the players alternate moves, that each player tries to
maximize his or her perceived return, and is indifferent to the returns of the
remaining players. At the frontier nodes, an evaluation function is applied that
returns an N-tuple of values, where N is the number of players, with each
component corresponding to the estimated merit of the position with respect to
one of the players. Then, the value of each interior node where player i is to
move is the entire N-tuple of the child for which the ith component is a
maximum. Figure 2 shows a maxn tree for three players, with the correspond-
ing maxn values.

(2,8,1)(1,7,2) (5,6,3) (6,5,4) (8,4,S) (7,3,6) (4,2,7) (3,1,8)

Fig. 2. Three-player maxn game tree.

Multi-player alpha-beta pruning 101

More formally, define M(x) to be the static heuristic value of node x, and
M(x, p) to be the backed-up maxn value of node x, given that player p is to
move at node x. Ms(x, p) is the component of M(x, p) that corresponds to the
return for player i. We can then define the maxn value of a node recursively as
follows:

[M(x), if x is a frontier node,
M(x, p) = [M(xi, p') , otherwise,

such that Mp(xi, p ') = m a x Mp(Xi, p') where x i are the children of node x, p '
is the player that follows player p in the move order, and ties are broken in
favor of the leftmost node.

For example, an evaluation function for multi-player Othello might return
the number of pieces for each player on the board at any given point.

Minimax can be viewed as a special case of maxn for two players. The
evaluation function returns an ordered pair of x and - x , and each player
maximizes its component at its moves.

Luckhardt and Irani [2] observed that at nodes where player i is to move,
only the ith component of the children need be evaluated. At best, this can
produce a constant factor speedup, but it may be no less expensive to compute
all components than to compute only one. They correctly concluded that
without further assumptions on the values of the components, pruning of entire
branches is not possible with more than two players. Thus, they did not explore
such pruning any further.

They used the terms "shallow pruning" and "deep pruning" to refer to their
techniques of avoiding some partial evaluations. Since these terms had previ-
ously been used to describe actual tree pruning in the alpha-beta literature [1],
we will use the original meanings of both these terms, at the cost of inconsis-
tency with Luckhardt 's and Irani's terminology [2].

3. Alpha-beta in multi-player games

If there is an upper bound on the sum of all components of a tuple, and
there is a lower bound on the values of each component, then actual tree
pruning is possible. The first condition is a weaker form of the standard
constant-sum assumption, which is in fact required for two-player alpha-beta
pruning. The second is equivalent to assuming a lower bound of zero on each
component, since any other lower bound can be shifted to zero by subtracting
it from every component. Most practical evaluation functions will satisfy both
these conditions, since violating them implies that the value of an individual
component can be unbounded in at least one direction. For example, in the
evaluation function described above for multi-player Othello, no player can
have less than zero pieces on the board, and the total number of pieces on the

102 R.E. Korf

board is the same for all nodes at the same level in the game tree, since exactly

one piece is added at each move.

3.1. Immediate pruning

The simplest kind of pruning possible under these assumptions occurs when
player i is to move, and the ith component of one of its children equals the

upper bound on the sum of all components . In that case, all remaining children

can be pruned, since no child's ith component can exceed the upper bound on
the sum. We will refer to this as immediate pruning. This is equivalent to

situations in the two-player case when a child of a Max node has a value of ~¢,

or a child of a Min node has a value of - ~ .

3.2. Shallow pruning

A more complex situation is called shallow pruning in the alpha-beta
literature. Figure 3 shows an example of shallow pruning in a three-player

game, where the upper bound on the sum of each component is 9, Note that in

this particular example, the sum of each component is exactly 9, but an upper
bound is all that is required. Evaluating node b results in a lower bound of 3 on

the first component of node a, since player one is to move at node a. This
implies an upper bound on each of the remaining components of 9 - 3 = 6.

Evaluating node g produces a lower bound of 7 on the second component of

node f, since player two is to move at node f. Similarly, this implies an upper
bound on the remaining components of 9 - 7 = 2. Since the upper bound (2)
on the first component of node f is less than or equal to the lower bound on the

first component of node a (3), player one won' t choose node f and its
remaining children can be pruned. Similarly, evaluating node i causes its

remaining brothers to be pruned. This is similar to the pruning in the left

subtree of Fig. 1.
The procedure Shallow takes a Node to be evaluated, the Player to move at

that node, and an upper Bound on the component of the player to move, and
returns an N-tuple that is the maxn value of the node. Sum is the global upper
bound on the sum of all components of an N-tuple, and all components are
assumed to be non-negative. Initially, Shallow is called with the root of the

(3,3,3) (4,2,3) (3,1,5) (1,7,1) (1,6,2)

Fig. 3. Shallow pruning in three-player game tree.

Multi-player alpha-beta pruning 103

tree, the player to move at the root , and Sum. Note that the shallow pruning
procedure includes immediate pruning as a special case.

Shallow(Node, Player, Bound)

IF Node is terminal, RETURN static value

Best = Shallow(first Child, next Player, Sum)

FOR each remaining Child

IF Best[Player] > = Bound, RETURN Best

Current = Shallow(Child, next Player, Sum - Best[Player])

IF Current[Player] > Best[Player], Best = Current

RETURN Best

3.3. Correctness of shallow pruning procedure

Here we establish the correctness of the shallow pruning procedure, in the

sense that it computes the maxn value defined in Section 2.

Theorem 1. I f the evaluation of any position for any player is non-negative, and
the sum of all player's evaluations in any given position is less than or equal to
sum, and ties are broken in favor of the leftmost node, then Shallow(a, p, sum)
= M(a, p), for any node a and player p.

Proof. Since the only difference between the maxn procedure and the shallow
pruning procedure is that it doesn ' t examine certain nodes, it suffices to show

that the pruned nodes can have no effect on the maxn value of the root. There
are two types of pruning implemented in the shallow pruning procedure,
immediate pruning and shallow pruning.

Figure 4 shows the generic case of immediate pruning. Without loss of

generality, we assume that player one is to move at the root. In order for

immediate pruning to occur, Ml(b, 2) = sum, for some child b of node a. Since
all components are assumed to be non-negative, sum is the maximum possible

value of any individual component , and the remaining components must be

zero. Therefore sum = M~(b, 2) = max M~(a i, 2), where a i is a child of node a.
Thus, M(a, 1) = M(b, 2), and the remaining children of node a need not be

examined.
Figure 5 shows the generic case of shallow pruning. Again we assume

without loss of generali ty that player one is to move at the root, followed by

(sum, 0, 0)

Fig. 4. Generic case of immediate pruning.

104 R.E. Korf

b ~ c / J ~ - < s u m - y ,

x + y ~ s u m d 3L3_J

(, y )

Fig. 5. Gene r i c case of sha l low p run ing .

_>y)

players two and three in turn. Ml(b, 2) = x, M2(d, 3) = y, and x + y >t sum, in

order for shallow pruning to occur. Since player two is to move at node c,

M2(c, 2) = max M2(c i, 3), where ci is a child of node c. Therefore , M2(c, 2)
M2(d, 3) = y. Since the sum of all components cannot exceed sum, and all
components are non-negative, M~(c, 2) ~< sum - y ~ x, since x + y >1 sum.

Since M l(b, 2) = x I> M 1 (c, 2), and ties are broken in favor of leftmost nodes,
M(a, 1) ~ M(c, 2), and node c can have no effect on the maxn value of node a.

Therefore , the remaining children of node c can be pruned.
Since neither immediate nor shallow pruning eliminate nodes that can effect

the maxn value of the root node, and the shallow pruning procedure returns
the maxn value of the nodes it has examined, it correctly calculates the maxn

value of the root node. C]

3.4. Failure of deep pruning

In a two-player game, alpha-beta pruning allows an additional type of
pruning known as deep pruning. For example, in Fig. 1, nodes b and c are

pruned based on bounds inherited f rom their great-great-grandparent , the root
in this case. In general, deep pruning refers to pruning a node based on a

bound inherited f rom its great-grandparent , or any more distant ancestor. In a
two-player game tree, it can only occur in trees of height four or greater.
Surprisingly, deep pruning does not generalize to more than two players.

Figure 6 illustrates the problem. Again, the upper bound on the sum of each
component is 9. Evaluating node b produces a lower bound of 5 on the first
component of node a and hence an upper bound of 9 - 5 = 4 on the remaining

components . Evaluating node e results in a lower bound of 5 on the third
component of node d and hence an upper bound of 9 - 5 = 4 on the remaining
components . Since the upper bound of 4 on the first component of node d is
less than the lower bound of 5 on the first component of node a, the value of
node d cannot become the value of node a. Thus, we are tempted to prune

node f.
With three players, however, the value of node f c o u l d effect the value of the

root, depending on the value of node g. For example, if the value of node f

Multi-player alpha-beta pruning

4 (6, 1, 2)

Je f
(2, 2, 5) (2, 3, 4) or (3, O, 6)

Fig. 6. Failure of deep pruning for three players.

105

were (2, 3, 4), the value of node d would be (2, 2,'5), the value of node c
would be (2, 2, 5), and the value of node a would be (5, 2, 2). On the other
hand, if the value of node f were (3, 0, 6), then the value of node d would be
(3, 0, 6), the value of node c would be (6, 1, 2), and the value of node a would
be (6, 1, 2). Thus, even though the value of node fcannot be the maxn value of
the root, it can affect it. Hence, it cannot be pruned.

3.5. Optimality of shallow pruning

Given the failure of deep pruning in this example, is there a more restricted
form of pruning that is valid, or is shallow pruning the best we can do? The
answer is the latter, as expressed by the following theorem:

Theorem 2. Every directional algorithm that computes the maxn value of a
game tree with more than two players must evaluate every terminal node
evaluated by shallow pruning under the same ordering.

A directional algorithm [4] is one in which the order of node evaluation is
independent of the value of the nodes, and once a node is pruned it can never
be revisited. For example, a strictly left-to-right algorithm is directional.

Proof sketch. Since the actual proof given below is somewhat tedious and not
very revealing, we first present here an overview and example of the argument.
The main idea is illustrated by the construction in Fig. 7, which shows a
3-player, 6-level tree. We assume that node n is evaluated by shallow pruning
but pruned by another algorithm. We then show that the value of every node
above it depends on the value of node n. The letters to the left of the path
from the root to node n represent the greatest lower bounds on the compo-
nents corresponding to the player to move at each node. Since by assumption
node n is evaluated by shallow pruning, it must be the case that for any two

106 R.E. Korf

(~a,,) [-

(, b,)E

(,, >c) E"

E
(, ~>e,) [~

(,, ~f)

(,,0) or (, O, f+)
n

" • (a, ,)

" ~ (a+, b, O)

" ~ (0 , b+, c)

" ~ (d, O, c÷)

" ~ (d+, e, O)

" ~ (0, e+, f)

Fig. 7. Proof sketch of optimali ty of shallow pruning.

consecutive bounds x and y, x + y is strictly less than the global upper bound.
Since the decision to skip node n is made before any of the nodes to the right
of the path are examined, we are free to choose any values for these nodes
consistent with the global bounds. For this purpose, x + represents a value
greater than x by an arbitrarily small amount. The reader is encouraged to
assign each of the two alternative values to node n, and then compute the
maxn value of the root, to see that it is different in the two cases. The
propagation of values up the tree can be viewed as a "zipper" effect in the
sense that the original order of the " t ee th" (nodes) at the bottom determines
the order of the teeth at the top, even though no individual tooth can move
very far. The formal proof below is by induction on the height of the tree and
generalizes the result to an arbitrary number of players greater than two.

Proof (see Fig. 8). Assume the converse. Namely, that there exists a direction-
al maxn algorithm A, and a minimax tree T with N players, with a leaf node X °
that is evaluated by shallow pruning but not by algorithm A. Since both
shallow pruning and algorithm A are directional, and by assumption visit nodes
in the same order, (re)order the nodes in T from left to right in the order they
are visited, without loss of generality. Let X i refer to the ancestor of node X °
at height i in the tree, on the unique path from the root to X °, and also to its
maxn value, depending on the context. Let X~j refer to the j th component of

i i the maxn value of node X i. Thus, X i = (Xio X/ X,,). Let p(i) be the
i i - I player to move at level i in the tree. Thus, Xe¢i) is the maximum value of Wp(il

among all the children W i i of X i.
Consider the state of the shallow pruning algorithm just before it evaluates

node X °. It consists of the path from the root to node X °, plus a set of bounds
i - I a i, where c~ i is equal to the maximum value of Weci) among all the children

W i- 1 of X i to the left of X ~ ~. In other words, ai is the greatest lower bound so
far on X*pu). If at any level i, X i-1 has no brothers to its left, then a~ will simply
equal the global lower bound on each component . Without loss of generality,

Multi-player alpha-beta pruning 107

I'--], i 1- ~ ~ (V:(:) = °ti + e'

yi-1 = 0)
p(i+2) i-I

Xp(i) = 0 o._[r

(Xp-(li) = U, i + 2e, xi'lp(i+ 1) = 0)

Fig. 8. Inductive proof of optimality of shallow pruning.

let the global lower bound on each component be zero and the global upper
bound on the sum of all components be one. Any other bounds can always be
mapped to this range without affecting either algorithm since only relative
values matter.

The assumption that X ° is evaluated by shallow pruning constrains the values
of the ai. First, each of the ai must be strictly less than one. Otherwise, the
remaining children of X ~ would be immediately pruned, pruning X ° as well.
Fur thermore, each lower bound a~ induces a corresponding upper bound of
1 - a e on the remaining components of X i. If this upper bound on X i is less p(i-1)

X '-~ then the remaining than or equal to the lower bound of ai_ ~ on p~s_~),
children of X i would be pruned by shallow pruning, pruning X ° as well. Thus,

for a l l i 1 > l , 1 - a i > a ~ _ l , or a ~ + a ~ _ ~ < l .
Let Y~ be a brother of X i to its right. When either algorithm is about to

consider X °, the values and even the existence of the Y~ nodes is unknown to
the algorithms. Thus, we are free to choose values for the Y~, consistent with
the global bounds, without affecting either algorithm's decision to evaluate or
prune X °. We are also free to choose a value for X ° as well, since the decision
to evaluate or prune it is made before its value is known. The rest of the proof
consists of carefully choosing values for the yi and X ° so that the value of X ~,
for all i, will depend on the value of X °. This will be done by induction on i.

Basis step: i = 0. Trivially, if i = 0, then the value of X ~ = X ° depends on X °.
However , to strengthen the induction hypothesis, we will choose two different

0 0 values for X °. In one case, let Xp(~)= 0, and in the other case, let Xp(~)=
a~ + 2 e , and X°(2~ = 0, where e is an arbitrarily small positive value. In
particular, choose e such that ai + a~_ Z + 3e < 1, for all i/> 1.

Induction step. Now assume that for all values up to and including i - 1,
i -1 i -1 i - I Xp(i) = O, or Xp(i) = a i -1- 2e and Xp(~+~) = O, depending on the value of X °.

1(18 R.E. Kor f

Choose the value of Y' ~ as follows: yi- pl ,) = ai + e and Y' p (i + l) = O{i~ I + 2 E and

y,-~ = 0, Note that the sum of the y i ~ components is ai + e + ~i, ~ + 2e + pIi + 2)
0 = a i + ai+ t + 3 e < 1, since a: + ai+ 1 < 1, and e was chosen to satisfy this

property. Thus, this is a legal set of components for the value of Yi 1.
Now there are two cases to consider: In case I, Xif,<~ = 0. In that case, since
i I i I yi-I

Y p (i) = a i + 6) oL i ~ (} = X p (i) , i s t h e b e s t c h i l d o f X ~, a n d t h e v a l u e o f X ~
i = Y' ~ + 2 e and equals the value of Y' ~. In particular, Xpo+~) ~,1~+1~=o~+~

i i I i I i ~ = 0 . In that case, Xp(i+2) = Yp(i+2)= 0. In case II, Xpo) = ai + 2e and Xp~+l)
i~-I i - 1 x i - I since X p ~ = ai + 2e > ~i + e = Y p,)> a , is the best child of X ~, and the

• i i 1
value of X i equals the value of X ~ i In particular, Xp~+!) = X j,,+ i i = 0. Thus,

i
= 0 , and in the other case, Xp(i+ l)=OLi+l+26 and in one c a s e , Xp(i+l)

XJp~+2) = 0. This is the induction hypothesis for i.
Thus, the induction hypothesis is true for i, given that it is true for i - 1.

Therefore , for such a tree of any height, the maxn value of the root depends on
X". But if algorithm A prunes X °, it cannot determine the maxn value of the

root. This contradicts our assumption that algorithm A works for any maxn

tree. Therefore , every directional algorithm that computes the maxn value of a
game tree with more than two players must evaluate every terminal node

evaluated by shallow pruning. []

3.6. Best-case per formance

How effective is shallow pruning in the best case? For simplicity, we will

exclude immediate pruning by assuming that no one component can equal the
upper bound on the sum. The best-case analysis of shallow pruning is indepen-

dent of the number of players and was done by Knuth and Moore [1] for two

players.
In order to evaluate a node in the best case, one child must be evaluated,

and then evaluating one grandchild of each remaining child will cause the
remaining grandchildren to be pruned (see Fig. 3). Thus, If F (d) is the number
of leaf nodes generated to evaluate a tree of depth d with branching factor b in

the best case, then F(d) = F(d - 1) + (b - 1)*F(d - 2). Since a tree of depth
zero is a single node, and a tree of depth one requires all children to be
evaluated, the initial conditions are F (0) = 1 and F (1) = b. Note that in a
binary tree, F(d) is the familiar Fibonacci sequence. The solution to the

general recurrence has an asymptotic branching factor of ½ (1 + x /Tb-- 3). For
large values of b, this approaches ~ which is the best-case performance of full
two-player alpha-beta pruning.

3.7. Average-case per formance

Knuth and Moore [1] also determined that in the average case, the asymp-
totic branching factor of two-player shallow pruning is approximately b / log b.
They assumed independent , distinct leaf values.

Multi-player alpha-beta pruning 109

In the case of multiple players, however, our model of the evaluation
function must have a lower bound on each component and an upper bound on
their sum. For simplicity, assume that the lower bound is zero and that the sum
is exactly one. Thus, we need a way of randomly choosing n-tuples such that
each component is identically distributed between zero and one, and the sum
of all components is one. One way to do this is by cutting the zero-one interval
in n - 1 places, with each cut point independently and identically distributed
from zero to one, and using the n resulting segments as the components of the
n-tuple. Another way is to choose n values independently and identically
distributed from zero to one, and then divide each component by the sum of all
of them. Furthermore, we assume that each tuple is generated independently
of the others.

Under this average-case model, the asymptotic branching factor of shallow
pruning with more than two players is simply b, the brute-force branching
factor. The analysis relies on the minimax convergence theorem [4], which
holds for two-player minimax trees. This surprising phenomenon is that if the
leaf values are chosen independently from the same distribution, the variance
of the root value decreases with increasing height of the tree, and in the limit
of infinite height, the root value can be predicted with probability one. The
actual limiting value depends on the leaf distribution and also on which player
moves last in the tree, but the convergence does not. Based on empirical
studies, we conjecture that minimax convergence applies to maxn trees as well.

In order for pruning to take place, the lower bound on one component must
be greater than or equal to its upper bound, which equals one minus the lower
bound on another component. Thus, pruning only takes place when the sum of
the lower bounds on two different components is greater than or equal to one.
In order for this to occur in the limiting value, the values of the remaining
components must be zero, since the sum of the two components in question is
one. This cannot happen in the limiting value, assuming continuous terminal
values. Thus, while pruning occurs at low levels of the tree, at higher levels it
becomes increasingly rare, and in the limit of infinite depth, it disappears
entirely. Thus, the asymptotic branching factor is simply b.

The shallow pruning algorithm has been implemented and its efficiency
tested using the above model of independent and identically distributed cut
points. Not only does the effective branching factor converge to b, but the
convergence is rapid enough that even for small trees, the branching factor is
very close to b. Thus, in practice, alpha-beta is not effective for multi-player
trees.

In the case of two-player alpha-beta, the performance of the algorithm is
purely a function of the order of the terminal values and not the values
themselves. In particular, Knuth and Moore [1] show that for any set of
terminal values there is an ordering for which alpha-beta achieves its best-case
performance. For example, if all terminal values were equal, then alpha-beta

110 R.E. Korf

evaluates only the minimum number of nodes. In the multi-player case, the
situation is quite different. While node ordering can have an effect on the
performance of multi-player pruning, even under optimal ordering the actual
values can limit the effectiveness of the algorithm. In particular, if at a given
level of the tree all the values are identical and more than two components are
non-zero, which is what happens given maxn convergence, then no further
pruning is possible above that level in the tree. Thus, the above result, that
shallow pruning does not reduce the asymptotic branching factor in the average
case, does not depend on the ordering of nodes in the tree.

4. Optimality of alpha-beta

Since Theorem 1 shows that shallow pruning is an optimal directional
algorithm for game trees with more than two players, an obvious question is
what is the optimal directional algorithm for two-player minimax trees? The
answer is standard alpha-beta pruning. While far from surprising, this result
has not appeared in the literature, to our knowledge.

Theorem 3. Every directional minimax search algorithm must evaluate every
leaf node evaluated by alpha-beta under the same ordering.

Proof. Assume the converse. Namely, that there exists a directional minimax
algorithm A, and a minimax tree T, with a leaf node n that is evaluated by
alpha-beta but not by algorithm A. Since both algorithms are directional,
(re)order the nodes in T from left to right in the order they are visited.
Consider the state of the alpha-beta algorithm just before it evaluates node n.
It consists of the path from the root to node n, together with a set of lower
bounds a i on the MAX ancestors of n, and a set of upper bounds/3i on the
MIN ancestors of n. When the algorithm is called on node n, a is the maximum
of the a~, or the greatest lower bound on all of the MAX ancestors of n, and/3
is the minimum of the/3~, or the least upper bound on all of the MIN ancestors
of n, based on all nodes to the left of node n. Since by assumption node n is
evaluated by alpha-beta, a must be strictly less than/3, or node n would have
been pruned. Now, construct a new tree T' from T by removing all branches to
the right of the path from the root to node n, making node n the last frontier
node in a left-to-right traversal of T'. Choose a value x for node n in T' that is
greater than a and less than/3. Since x is strictly greater than the lower bound
on all its MAX ancestors in T', and strictly less than the upper bound on all its
MIN ancestors in T', x is the unique minimax value of tree T'. Since algorithm
A by assumption is a directional algorithm and decides to prune node n in T
based on the nodes to its left, it must also prune node n in T' because T and T'
are identical to the left of node n. But then algorithm A cannot correctly

Multi-player alpha-beta pruning 111

compute the minimax value of T', since it is uniquely determined by node n
which is pruned by A in T'. This contradicts our assumption that algorithm A is
a correct minimax search algorithm. Therefore, every directional minimax
algorithm must evaluate every leaf node evaluated by alpha-beta. []

5. Conclusions

We considered the extension of alpha-beta pruning to games with more than
two players. Minimax was generalized to maxn by [2]. If we assume that there
is a lower bound on each component of the evaluation function, and an upper
bound on the sum of all components, then shallow alpha-beta pruning is valid,
but not deep pruning. In the best case, this results in significant savings in
computation, but in the average case it does not reduce the asymptotic
branching factor. This implies that the effectiveness of alpha-beta is limited to
the case of two players. We also showed that alpha-beta is an optimal
directional algorithm for two-player games.

Acknowledgement

This research was supported by an NSF Presidential Young Investigator
Award, and NSF Grant IRI-8801939. Thanks to Chris Ferguson and Judea
Pearl for helpful discussions concerning this work, to the anonymous reviewers
for their comments, and to Valerie Aylett for drawing the figures.

References

[1] D.E. Knuth and R.E. Moore, An analysis of alpha-beta pruning, Artif. lntell. 6 (1975)
293-326.

[2] C.A. Luckhardt and K.B. Irani, An algorithmic solution of N-person games, in: Proceedings
AAAI-86, Philadelphia, PA (1986) 158-162.

[3] A. Newell, J.C. Shaw and H.A. Simon, Chess playing programs and the problem of
complexity, IBM J. Res. Dev. 3 (1959) 320-335. Reprinted in: E.A. Feigenbaum and J.
Feldman, eds., Computers and Thought (McGraw-Hill, New York, 1963) 39-70.

[4] J. Pearl, Heuristics (Addison-Wesley, Reading, MA, 1984).
[5] C.E. Shannon, Programming a computer for playing chess, Philos. Mag. 41 (1950) 256-275.

