Merge Sort

- Merge Sort is an *easy-split, hard-join* method.
- split() is trivial.

  ```java
  public int split(int[] A, int lo, int hi)
  {
    return (lo + hi + 1)/2;
  }
  ```

- join() merges two smaller, sorted arrays.

 * Specifically, it merges \(A[lo:s-1] \) and \(A[s:hi] \) into

 _tempA[lo:hi], then copies _tempA back to A.

  ```java
  public void join(int[] A, int lo, int s, int hi)
  {
    merge(A, lo, s, hi);
    for (int i = lo; i <= hi; i++) {
      A[i] = _tempA[i];
    }
  }
  ```
private void merge(int[] A, int lx, int mx, int rx)
{
 int i = lx;
 int j = mx;

 for (int k = lx; k <= rx; k++) {
 if ((i < mx) && (j <= rx)) {
 if (A[i] < A[j])
 _tempA[k] = A[i++];
 else
 _tempA[k] = A[j++];
 }
 else if (i < mx) {
 _tempA[k] = A[i++];
 }
 else if (j <= rx) {
 _tempA[k] = A[j++];
 }
 }
}
• Merge Sort takes $O(n \log n)$ steps.

 – Because each `split()` divides the array into two (almost) equal-sized parts, each element is `join()`'ed $\log n$ times.
Quick Sort

• Quick Sort is a *hard-split, easy-join* method.

• The following diagram illustrate one step.

```
  <=P  >P
    /   \
   /     \
  <=P  >P
```

`split`
Quick Sort (cont.)

public int split(int[] A, int lo, int hi)
{
 int key = A[lo];
 int lx = lo; // left index.
 int rx = hi; // right index.

 // Invariant 1: key <= A[rx+1:hi].
 // Invariant 3: there exists ix in [lo:rx]
 // such that A[ix] <= key.
 // Invariant 4: there exists jx in [lx:hi]
 // such that key <= A[jx].

 while (lx <= rx) {
 while (key < A[rx]) { // will terminate due to invariant 3.
 rx--; // Invariant 1 is maintained.
 }
while (A[lx] < key) { // will terminate due to invariant 4.
 lx++; // Invariant 2 is maintained.
}

if (lx <= rx) {
 int temp = A[lx];
 A[rx] = temp; // invariant 4 is maintained.
 rx--; // invariant 1 is maintained.
 lx++; // invariant 2 is maintained.
}

return lx;
public void join(int[] A, int lo, int s, int hi)
{
 // nothing to do!
}

Quick Sort (cont.)

- If the pivot chosen by split() divides the array into two (almost) equal-sized parts, each element is split() $\log n$ times.

- Thus, in this case, Quick Sort takes $O(n \log n)$ steps.
Quick Sort (cont.)

- On the other hand, an unfortunate choice of the pivot could divide the array into two parts, one that contains no elements and another that contains $n - 1$ elements.

- In this case, Quick Sort takes $O(n^2)$ steps.
Quick Sort (cont.)

- Various strategies are used to choose the pivot. (None is perfect.)
 - Pick the first element (worst-case scenario is a nearly-sorted or nearly-inverse-sorted array).
 - Take the median of the first, last, and middle elements. This is often used in practice, since it behaves well on the nearly-sorted case, which can be quite common in some applications.
Summary

<table>
<thead>
<tr>
<th>Sort</th>
<th>Best-Case Cost</th>
<th>Worst-Case Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Insertion</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Merge</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Quick</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

where n is the size of the container