Building a Regular Expression from an NFA

Given an NFA M, build an equivalent regular expression α.

That is, the language accepted by the NFA M is identical to the language defined by the regular expression α: $L(M) = L(\alpha)$.

For this construction, we will use a new kind of finite automation called a generalized nondeterministic finite automaton (GNFA).
Generalized NFAs

A GNFA is an extension of an NFA where state transitions are defined by regular expressions. Edge labels are now regular expressions.

Motivation:

1. NFAs and regular expressions can be viewed as different representations of the same thing: regular languages.
2. A GNFA is a hybrid representation, an NFA with transitions based on regular expressions.
Generalized NFAs

A GNFA is an extension of an NFA where state transitions are defined by regular expressions. Edge labels are now regular expressions.

Motivation:

1. NFAs and regular expressions can be viewed as different representations of the same thing: regular languages.
2. A GNFA is a hybrid representation, an NFA with transitions based on regular expressions.
3. As such, useful for conversion from NFAs to regular expressions.
Generalized NFAs

A GNFA is an extension of an NFA where state transitions are defined by regular expressions. Edge labels are now regular expressions.

Motivation:

1. NFAs and regular expressions can be viewed as different representations of the same thing: regular languages.
2. A GNFA is a hybrid representation, an NFA with transitions based on regular expressions.
3. As such, useful for conversion from NFAs to regular expressions.
4. Two step conversion: from NFA to GNFA to regular expression.
Generalized NFAs

We define GNFAs so that they are always in a form that is convenient for use in constructing a regular expression from an NFA.

The form has the following conditions:

1. The start state has a transition to every other state but there are no transitions to it.
2. There is only a single accept state, and it has a transition from every other state but no transitions to another state. It is not the start state.
3. Have a single transition between every pair of states \((p, q)\), including from a state to itself (except no transitions into start state or out of final state).
Building a Regular Expression from an NFA

Construction of regular expression from NFA:

1. Convert NFA to GNFA.

2. Convert GNFA to regular expression by eliminating one state at a time until down to a GNFA with only a start state and an accepting state, labeled by the equivalent regular expression.
Building a Regular Expression from an NFA

Construction of regular expression from NFA:

1. Convert NFA to GNFA.
2. Convert GNFA to regular expression by eliminating one state at a time until down to a GNFA with only a start state and an accepting state, labeled by the equivalent regular expression.

▶ For each GNFA, every edge label is a regular expression that represents a set of paths between corresponding nodes in the NFA.
Let $R(p, q)$ be the regular expression that labels the transition in a GNFA from p to q.

From an input NFA M, construct an output GNFA M' with two states, a start state q_1 and an accepting state q_2, where $R(q_1, q_2)$ describes $L(M)$.

For $\alpha = R(q_1, q_2)$, $L(\alpha) = L(M)$.
Transformations of NFA M to satisfy the first two conditions of GNFA form:

1. If the start state of M has any transitions coming into it, create a new start state s and connect s to M’s start state via an ϵ transition.

2. If there is more than one accepting state of M or if there is just one but there are transitions out of it, create a new accepting state and connect each of M’s final states to it via an ϵ transition.

Remove the original accepting states from the set of accepting states.
Building a Regular Expression from an NFA

To satisfy the third condition of standard GNFA form:

- If the set of labels on the set of transitions from p to q is $\{c_1, c_2, ..., c_n\}$, then delete them and replace them with a single transition with the label $\{c_1 + c_2 + ... + c_n\}$.
- For each state pair that does not yet have a transition, create a transition from p to q labeled \emptyset.
Conversion to GNFA

Figure 6.3
Building a Regular Expression from an NFA

Having performed the above transformations, have converted NFA M to GNFA M'. Now perform state elimination on M' to build the regular expression α corresponding to M.

State elimination: eliminate states one by one, until only the start and final states with transition α remain.

Select a state r and remove it and the transitions into it and out of it, while retaining information about paths through that state. Must modify remaining transitions so the functionality of M' is the same.
To remove state r from GNFA M':

Consider any pair of states p and q distinct from r.

To update M' after removing state r:

- Update $R(p, q)$ to include transitions from p to q thru r:
 - Transition from p to r;
 - r to itself zero or more times;
 - transition from r to q.

$$R'(p, q) = R(p, q) + R(p, r)R(r, r)^*R(r, q).$$
Function $\text{buildregex}(M')$: For GNFA M', returns the regular expression that accepts the same language as M'.

Until only the start state and the final state remain do:

1. Select some state r of M' other than the start or end state.
2. For every transition from a state p to a state q, where p and q are distinct from r, compute the new label $R'(p, q)$ using the formula:
 \[R'(p, q) = R(p, q) + R(p, r)R(r, r)^*R(r, q). \]
3. Remove r and all transitions into and out of it.

Return the regular expression α that labels the transition from the start state to the final state.
Example 6.9-1

Let \(\text{rip} \) be state 2. Then

\[
R'(1, 3) = R(1, 3) \cup R(1, \text{rip})R(\text{rip}, \text{rip})^*R(\text{rip}, 3)
\]

\[
= R(1, 3) \cup R(1, 2)R(2, 2)^*R(2, 3)
\]

\[
= \emptyset \cup a \ b^* \ a
\]

\[
= a \ b^* \ a
\]
Remove state 2.

\[
R'(1, 4) = R(1, 4) \cup R(1, 2)R(2, 2)^*R(2, 4)
\]
\[
= b \cup a \ b^* \ \emptyset
\]
\[
= b
\]

\[
R'(4, 3) = R(4, 3) \cup R(4, 2)R(2, 2)^*R(2, 3)
\]
\[
= \emptyset \cup b \ b^* \ a
\]
\[
= b \ b^* \ a
\]

There are no outgoing edges from 3 and no incoming edges to 1.
Example 6.9-3

Remove state 4.

\[R'(1,3) = R(1,3) \cup R(1,4)R(4,4)^*R(4,3) \]
\[= a b^* a \cup bbb^* a \]

Result
Example 6.9-4

Original FSM:

```
 start 1 (a) 2 (a) 3
        b     b
```

Regular Expression:

```
ab^a \cup bbb^a
```