Programming GPUs with CUDA

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu
Why GPUs?

- Two major trends
 - GPU performance is pulling away from traditional processors
 - availability of general (non-graphics) programming interfaces

- GPU in every PC and workstation
 - massive volume, potentially broad impact
Power and Area Efficiency

http://www.realworldtech.com/compute-efficiency-2012/2
GPGPU?

- General Purpose computation using GPU
 - applications beyond 3D graphics
 - typically, data-intensive science and engineering applications

- Data-intensive algorithms leverage GPU attributes
 - large data arrays, streaming throughput
 - fine-grain “single instruction multiple threads” (SIMT) parallelism
 - low-latency floating point computation
GPGPU Programming in 2005

- Stream-based programming model
- Express algorithms in terms of graphics operations
 - use GPU pixel shaders as general-purpose SP floating point units
- Directly exploit
 - pixel shaders
 - vertex shaders
 - video memory

Example: GPUSort (Govindaraju, Manocha; 2005)

Figure Credits: Dongho Kim, School of Media, Soongsil University
// invert the other half of the bitonic array and merge

```cpp
glBegin(GL_QUADS);
for(int start=0; start<num_quads; start++){
    glTexCoord2f(s+width, 0);
    glVertex2f(s, 0);
    glTexCoord2f(s+width/2, 0);
    glVertex2f(s+width/2, 0);
    glTexCoord2f(s+width/2, Height);
    glVertex2f(s+width/2, Height);
    glTexCoord2f(s+width, Height);
    glVertex2f(s, Height);
    s+=width;
}

```

```cpp
glEnd();
```

(Govindaraju, Manocha; 2005)
CUDA

CUDA = Compute Unified Device Architecture

- Software platform for parallel computing on Nvidia GPUs
 - introduced in 2006
 - Nvidia’s repositioning of GPUs as versatile compute devices

- C plus a few simple extensions
 - write a program for one thread
 - instantiate for many parallel threads
 - familiar language; simple data-parallel extensions

- CUDA is a scalable parallel programming model
 - runs on any number of processors without recompiling
NVIDIA Fermi GPU (2010)

- 3.0B transistors
- 15 SMs; 1 SM disabled for yield
- 32 CUDA cores per SM
 —CUDA core = programmable shader
- 480 cores total

Figure credit: http://tpucdn.com/reviews/NVIDIA/GeForce_GTX_480_Fermi/images/arch.jpg
NVIDIA’s Fermi GPU

- Configurable L1 data cache
 - 48K shared memory / 16K L1 cache
 - 16K L1 cache / 48K shared memory
- 768K L2 cache
- 4 SFU (transcendental math and interpolation) per SM
- 16 LD/ST units per SM
- 16 DP FMA per clock per SM
- GigaThread Engine
 - execute up to 16 concurrent kernels
- Unified address space
 - thread local, block shared, global
 - supports C/C++ pointers
- ECC support

Figure Credit:
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
NVIDIA GPU Stats Through Fermi

<table>
<thead>
<tr>
<th>GPU</th>
<th>G80</th>
<th>GT200</th>
<th>Fermi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td>681 million</td>
<td>1.4 billion</td>
<td>3.0 billion</td>
</tr>
<tr>
<td>CUDA Cores</td>
<td>128</td>
<td>240</td>
<td>512</td>
</tr>
<tr>
<td>Double Precision Floating Point Capability</td>
<td>None</td>
<td>30 FMA ops / clock</td>
<td>256 FMA ops / clock</td>
</tr>
<tr>
<td>Single Precision Floating Point Capability</td>
<td>128 MAD ops / clock</td>
<td>240 MAD ops / clock</td>
<td>512 FMA ops / clock</td>
</tr>
<tr>
<td>Special Function Units (SFUs) / SM</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Warp schedulers (per SM)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Shared Memory (per SM)</td>
<td>16 KB</td>
<td>16 KB</td>
<td>Configurable 48 KB or 16 KB</td>
</tr>
<tr>
<td>L1 Cache (per SM)</td>
<td>None</td>
<td>None</td>
<td>Configurable 16 KB or 48 KB</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>None</td>
<td>None</td>
<td>768 KB</td>
</tr>
<tr>
<td>ECC Memory Support</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Concurrent Kernels</td>
<td>No</td>
<td>No</td>
<td>Up to 16</td>
</tr>
<tr>
<td>Load/Store Address Width</td>
<td>32-bit</td>
<td>32-bit</td>
<td>64-bit</td>
</tr>
</tbody>
</table>

Note: Fermi specification here is pre-release. Actual cores = 480

Figure Credit: http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
NVIDIA Kepler GK110 (May 2012)

- 28nm chip, 7.1B transistors
- 15 Streaming Multiprocessors
 - 192 CUDA cores
 - fully pipelined FP and INT units
 - IEEE 754-2008; fused multiply add
 - four warp schedulers
 - 32-thread groups (warps)
 - 4 warps issue and execute concurrently
 - 2 inst/warp/cycle
 - 64 DP FP units
 - 32 SFU
 - 32 LD/ST units
- 6 64-bit memory controllers

Why CUDA?

- **Business rationale**
 - opportunity for Nvidia to sell more chips
 - extend the demand from graphics into HPC
 - insurance against uncertain future for discrete GPUs
 - both Intel and AMD integrating GPUs onto microprocessors

- **Technical rationale**
 - hides GPU architecture behind the programming API
 - programmers never write “directly to the metal”
 - insulate programmers from details of GPU hardware
 - enables Nvidia to change GPU architecture completely, transparently
 - preserve investment in CUDA programs
 - simplifies the programming of multithreaded hardware
 - CUDA automatically manages threads
CUDA Design Goals

• Support heterogeneous parallel programming (CPU + GPU)
• Scale to hundreds of cores, thousands of parallel threads
• Enable programmer to focus on parallel algorithms
 —not GPU characteristics, programming language, scheduling ...
CUDA Software Stack for Heterogeneous Computing

Figure Credit: NVIDIA CUDA Compute Unified Device Architecture Programming Guide 1.1
Key CUDA Abstractions

- Hierarchy of concurrent threads
- Lightweight synchronization primitives
- Shared memory model for cooperating threads
Hierarchy of Concurrent Threads

- Parallel kernels composed of many threads
 - all threads execute same sequential program
 - use parallel threads rather than sequential loops

- Threads are grouped into thread blocks
 - threads in block can sync and share memory

- Blocks are grouped into grids
 - threads and blocks have unique IDs
 - threadIdx: 1D, 2D, or 3D
 - blockIdx: 1D or 2D
 - simplifies addressing when processing multidimensional data

Slide credit: Patrick LeGresley, NVidia
CUDA Programming Example

Computing $y = ax + y$ with a serial loop

```c
void saxpy_serial(int n, float alpha, float *x, float *y) {
    for (int i = 0; i < n; i++)
        y[i] = alpha * x[i] + y[i];
}

// invoke serial saxpy kernel
saxpy_serial(n, 2.0, x, y)
```

Computing $y = ax + y$ in parallel using CUDA

```c
__global__
void saxpy_parallel(int n, float alpha, float *x, float *y) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < n) y[i] = alpha * x[i] + y[i];
}

// invoke parallel saxpy kernel (256 threads per block)
int nblocks = (n + 255)/256
saxpy_parallel<<<nbblocks, 256>>>(n, 2.0, x, y)
```
Synchronization and Coordination

- Threads within a block may synchronize with barriers

 ... step 1 ...
  ```
  __syncthreads();
  ... step 2 ...
  ```

- Blocks can coordinate via atomic memory operations
 - e.g. increment shared counter with `atomicInc()`
Comparing the abstract models

CPU vs. GPGPU vs. CUDA

Figure Credit: http://www.nvidia.com/docs/IO/55972/220401_Reprint.pdf
CUDA Memory Model

- Thread
 - Per-thread Local Memory
- Block
 - Per-block Shared Memory

Kernel 0
- Sequential Kernels
 - Per-device Global Memory

Kernel 1

Figure credits: Patrick LeGresley, NVidia
Memory Model (Continued)

Host memory

\texttt{cudaMemcpy()}

Device 0 memory

Device 1 memory

Figure credit: Patrick LeGresley, NVidia
Memory Access Latencies (FERMI)

- Registers: each SM has 32KB of registers
 - each thread has private registers
 - max # of registers / kernel: 63
 - latency: ~1 cycle; bandwidth ~8,000 GB/s

- L1+Shared Memory: on-chip memory that can be used either as L1 cache to share data among threads in the same thread block
 - 64 KB memory: 48 KB shared / 16 KB L1; 16 KB shared / 48 KB L1
 - latency: 10-20 cycles. bandwidth ~1,600 GB/s

- Local Memory: holds "spilled" registers, arrays

- L2 Cache: 768 KB unified L2 cache, shared among the 16 SMs
 - caches load/store from/to global memory, copies to/from CPU host, and texture requests
 - L2 implements atomic operations

- Global Memory: Accessible by all threads as well as host (CPU). High latency (400-800 cycles), but generally cached
Minimal Extensions to C

- Declaration specifiers to indicate where things live
 — functions
 __global__ void KernelFunc(...); // kernel callable from host
 must return void
 __device__ float DeviceFunc(...); // function callable on device
 no recursion
 no static variables within function
 __host__ float HostFunc(); // only callable on host
 — variables (later slide)

- Extend function invocation syntax for parallel kernel launch
 KernelFunc<<<500, 128>>>(...); // 500 blocks, 128 threads each

- Built-in variables for thread identification in kernels
 dim3 threadIdx; dim3 blockIdx; dim3 blockDim;
Invoking a Kernel Function

- Call kernel function with an execution configuration

```c
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
```

- Any call to a kernel function is asynchronous
 — explicit synchronization is needed to block

- `cudaThreadSynchronize()` forces runtime to wait until all preceding device tasks have finished
Example of CUDA Thread Organization

- Grid as 2D array of blocks
- Block as 3D array of threads

```c
__global__ void KernelFunction(...);
dim3 dimBlock(4, 2, 2);
dim3 dimGrid(2, 2, 1);
KernelFunction<<<dimGrid, dimBlock>>>(...);
```
CUDA Variable Declarations

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local</td>
<td>int LocalVar;</td>
<td>local</td>
<td>thread</td>
</tr>
<tr>
<td>device shared</td>
<td>int SharedVar;</td>
<td>shared</td>
<td>block</td>
</tr>
<tr>
<td>device</td>
<td>int GlobalVar;</td>
<td>global</td>
<td>grid</td>
</tr>
<tr>
<td>device constant</td>
<td>int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
</tr>
</tbody>
</table>

- __device__ is optional with __local__, __shared__, or __constant__
- Automatic variables without any qualifier reside in a register—except arrays: reside in local memory
- Pointers
 - allocated on the host and passed to the kernel
 - __global__ void Kernelfunc(float *ptr)
 - address obtained for a global variable: float *ptr = &GlobalVar
Using Per Block Shared Memory

- Share variables among threads in a block with shared memory
  ```
  __shared__ int scratch[blocksize];
  scratch[threadIdx.x] = arr[threadIdx.x];
  // ...
  // ... compute on scratch values
  // ...
  arr[threadIdx.x] = scratch[threadIdx.x];
  ```

- Communicate values between threads
  ```
  scratch[threadIdx.x] = arr[threadIdx.x];
  __syncthreads();
  int left = scratch[threadIdx.x - 1];
  ```
Features Available in GPU Code

- Special variables for thread identification in kernels

  ```
  dim3 threadIdx; dim3 blockIdx; dim3 blockDim;
  ```

- Intrinsics that expose specific operations in kernel code

  ```
  __syncthreads(); // barrier synchronization
  ```

- Standard math library operations

 — exponentiation, truncation and rounding, trigonometric functions, min/max/abs, log, quotient/remainder, etc.

- Atomic memory operations

 — atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
Runtime Support

• Memory management for pointers to GPU memory
 —cudaMalloc(), cudaFree()

• Copying from host to/from device, device to device
 —cudaMemcpy(), cudaMemcpy2D(), cudaMemcpy3D()
More Complete Example: Vector Addition

```c
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
}

int main()
{
    ...
    // Run N/256 blocks of 256 threads each
    vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
}
```
/* allocate and initialize host (CPU) memory */
float *h_A = ... , *h_B = ... ;

/* allocate device (GPU) memory */
float *d_A , *d_B , *d_C ;
cudaMalloc((void**) &d_A , N * sizeof(float)) ;
cudaMalloc((void**) &d_B , N * sizeof(float)) ;
cudaMalloc((void**) &d_C , N * sizeof(float)) ;

/* copy host memory to device */
cudaMemcpy(d_A , h_A , N * sizeof(float) ,
cudaMemcpyHostToDevice)) ;
cudaMemcpy(d_B , h_B , N * sizeof(float) ,
cudaMemcpyHostToDevice)) ;

/* execute the kernel on N/256 blocks of 256 threads each */
vecAdd<<<N/256 , 256>>> (d_A , d_B , d_C) ;
Extended C Summary

- **Declspecs**
 - `global, device, shared, local, constant`

  ```c
  __device__ float filter[N];
  __global__ void convolve (float *image) {
    __shared__ float region[M];
    ...
    region[threadIdx] = image[i];
    __syncthreads()
    ...
    image[j] = result;
  }
  ```

- **Keywords**
 - `threadIdx, blockIdx`

- **Intrinsics**
 - `__syncthreads`

- **Runtime API**
 - `Memory, symbol, execution management`

  ```c
  // Allocate GPU memory
  void *myimage = cudaMalloc(bytes)
  ```

  ```c
  // 100 blocks, 10 threads per block
  convolve<<<100, 10>>> (myimage);
  ```

- **Function launch**
Compiling CUDA

C/C++ CUDA Application

NVCC

CPU Code

PTX Code

Generic

PTX to Target Translator

GPU

... GPU

Target device code

Specialized
Ideal CUDA programs

- High intrinsic parallelism
 - e.g. per-element operations
- Minimal communication (if any) between threads
 - limited synchronization
- High ratio of arithmetic to memory operations
- Few control flow statements
 - SIMT execution
 - divergent paths among threads in a block may be serialized (costly)
 - compiler may replace conditional instructions by predicated operations to reduce divergence
CUDA Matrix Multiply: Host Code

// Host multiplication function
// Compute C = A * B
// hA is the height of A
// wA is the width of A
// wB is the width of B
void Mul(const float* A, const float* B, int hA, int wA, int wB, float* C)
{
 int size;

 // Load A and B to the device
 float* Ad;
 size = hA * wA * sizeof(float);
 cudaMalloc((void**)&Ad, size);
 cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);
 float* Bd;
 size = wA * wB * sizeof(float);
 cudaMalloc((void**)&Bd, size);
 cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

 // Allocate C on the device
 float* Cd;
 size = hA * wB * sizeof(float);
 cudaMalloc((void**)&Cd, size);

 // Compute the execution configuration assuming
 // the matrix dimensions are multiples of BLOCK_SIZE
 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
 dim3 dimGrid(wB / dimBlock.x, hA / dimBlock.y);

 // Launch the device computation
 Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

 // Read C from the device
 cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

 // Free device memory
 cudaFree(Ad);
 cudaFree(Bd);
 cudaFree(Cd);
}
CUDA Matrix Multiply: Device Code

// Device multiplication function called by Mul()
// Compute C = A * B
// wA is the width of A
// wB is the width of B
__global__ void Mul(float* A, float* B, int wA, int wB, float* C)
{
 // Block index
 int bx = blockIdx.x;
 int by = blockIdx.y;

 // Thread index
 int tx = threadIdx.x;
 int ty = threadIdx.y;

 // Index of the first sub-matrix of A processed by the block
 int aBegin = wA * BLOCK_SIZE * by;

 // Index of the last sub-matrix of A processed by the block
 int aEnd = aBegin + wA - 1;

 // Step size used to iterate through the sub-matrices of A
 int aStep = BLOCK_SIZE;

 // Index of the first sub-matrix of B processed by the block
 int bBegin = BLOCK_SIZE * bx;

 // Step size used to iterate through the sub-matrices of B
 int bStep = BLOCK_SIZE * wB;

 // The element of the block sub-matrix that is computed
 float Csub = 0;

 // Loop over all the sub-matrices of A and B required to
 // compute the block sub-matrix
 for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

 // Shared memory for the sub-matrix of A
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 // Shared memory for the sub-matrix of B
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Load the matrices from global memory to shared memory;
 // each thread loads one element of each matrix
 As[ty][tx] = A[a + wA * ty + tx];
 Bs[ty][tx] = B[b + wB * ty + tx];

 // Synchronize to make sure the matrices are loaded
 __syncthreads();

 // Multiply the two matrices together;
 // each thread computes one element
 // of the block sub-matrix
 for (int k = 0; k < BLOCK_SIZE; ++k)
 Csub += As[ty][k] * Bs[k][tx];

 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 __syncthreads();
 }

 // Write the block sub-matrix to global memory;
 // each thread writes one element
 int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
 C[c + wB * ty + tx] = Csub;
Concurrent Kernel Execution in Fermi
Optimization Considerations

• Kernel optimizations
 — make use of shared memory
 — minimize use divergent control flow
 - SIMT execution must follow all paths taken within a thread group
 — use intrinsic instructions when possible
 - exploit the hardware support behind them

• CPU/GPU interaction
 — use asynchronous memory copies

• Key resource considerations for Fermi GPU’s
 — max dimensions of a block (1024, 1024, 64)
 — max 1024 threads per block
 — 32K registers per SM
 — 16 KB / 48KB cache
 — 48 KB / 16KB shared memory
 — see the programmer’s guide for a complete set of limits for compute capability 2.x
CUDA Resources

- General information about CUDA
 — www.nvidia.com/object/cuda_home.html

- Nvidia GPUs compatible with CUDA

- CUDA sample source code
 — www.nvidia.com/object/cuda_get_samples.html

- Download the CUDA SDK
 — www.nvidia.com/object/cuda_get.html
Portable CUDA Alternative: OpenCL

- Framework for writing programs that execute on heterogeneous platforms, including CPUs, GPUs, etc.
 - supports both task and data parallelism
 - based on subset of ISO C99 with extensions for parallelism
 - numerics based on IEEE 754 floating point standard
 - efficiently interoperated with graphics APIs, e.g. OpenGL

- OpenCL managed by non-profit Khronos Group

- Initial specification approved for public release Dec. 8, 2008
 - specification 1.2 released Nov 14, 2011
OpenCL Kernel Example: 1D FFT

```c
__kernel void fft1D_1024 (__global float2 *in, __global float2 *out,
                           __local float *sMemx, __local float *sMemy) {

    int tid = get_local_id(0);
    int blockIdx = get_group_id(0) * 1024 + tid;
    float2 data[16];

    // starting index of data to/from global memory
    in = in + blockIdx;  out = out + blockIdx;

    globalLoads(data, in, 64); // coalesced global reads
    fftRadix16Pass(data);      // in-place radix-16 pass
    twiddleFactorMul(data, tid, 1024, 0);

    // local shuffle using local memory
    localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4)));
    fftRadix16Pass(data);      // in-place radix-16 pass
    twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication
    localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15)));

    // four radix-4 function calls
    fftRadix4Pass(data); fftRadix4Pass(data + 4);
    fftRadix4Pass(data + 8); fftRadix4Pass(data + 12);

    // coalesced global writes
    globalStores(data, out, 64);
}
```
// create a compute context with GPU device
callback = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// create a work-queue
queue = clCreateWorkQueue(context, NULL, NULL, 0);

// allocate the buffer memory objects
memobj[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*2*num_entries, "srcA"),
memobj[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float)*2*num_entries, NULL);

// create the compute program
program = clCreateProgramFromSource(context, 1, &fft1D_1024_kernel_src, NULL);

// build the compute program executable
clBuildProgramExecutable(program, false, NULL, NULL);

// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024");

// create N-D range object with work-item dimensions
range = clCreateNDRangeBoxContainer

// set the args values
c1SetKernelArg(kernel, 0, (void *)&memobj[0], sizeof(cl_mem), NULL);
c1SetKernelArg(kernel, 1, (void *)&memobj[1], sizeof(cl_mem), NULL);
c1SetKernelArg(kernel, 2, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
c1SetKernelArg(kernel, 3, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);

// execute kernel
clExecuteKernel(queue, kernel, NULL, range, NULL, 0, NULL);

• Vivek Sarkar. Introduction to General-Purpose computation on GPUs (GPGPUs), COMP 635, September 2007

• Tom Halfhill. Parallel Processing with CUDA, Microprocessor Report, January 2008.

• http://defectivecompass.wordpress.com/2006/06/25/learning-from-gpusort

• http://en.wikipedia.org/wiki/OpenCL

• http://www.khronos.org/opencl